You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Special Issue covers a wide range of topics from fundamental studies to applications of ionized gases. It is dedicated to four topics of interest: 1. ATOMIC COLLISION PROCESSES (electron and photon interactions with atomic particles, heavy particle collisions, swarms, and transport phenomena); 2. PARTICLE AND LASER BEAM INTERACTION WITH SOLIDS (atomic collisions in solids, sputtering and deposition, and laser and plasma interactions with surfaces); 3. LOW TEMPERATURE PLASMAS (plasma spectroscopy and other diagnostic methods, gas discharges, and plasma applications and devices); 4. GENERAL PLASMAS (fusion plasmas, astrophysical plasmas, and collective phenomena). This Special Issue of Atoms will highlight the need for continued research on ionized gas physics in different topics ranging from fundamental studies to applications, and will review current investigations.
The last 50 years have seen a tremendous progress in the research on quasars. From a time when quasars were unforeseen oddities, we have come to a view that considers quasars as active galactic nuclei, with nuclear activity a coming-of-age experienced by most or all galaxies in their evolution. We have passed from a few tens of known quasars of the early 1970s to the 500,000 listed in the catalogue of the Data Release 14 of the Sloan Digital Sky Survey. Not surprisingly, accretion processes on the central black holes in the nuclei of galaxies — the key concept in our understanding of quasars and active nuclei in general — have gained an outstanding status in present-day astrophysics. Acc...
None
None
Researchers believe that the universe is vast and old enough that life has evolved and become intelligent and technological many times on different worlds - yet we have seen no trace of extraterrestrial intelligence. This conundrum, known as the Fermi pardox, is the deepest mystery in the search for extraterrestrial intelligence. This book aims to shed some light on that biggest of questions: where is everybody?
Astrobiology is an expanding, interdisciplinary field investigating the origin, evolution and future of life in the universe. Tackling many of the foundational debates of the subject, from discussions of cosmological evolution to detailed reviews of common concepts such as the 'Rare Earth' hypothesis, this volume is the first systematic survey of the philosophical aspects and conundrums in the study of cosmic life. The author's exploration of the increasing number of cross-over problems highlights the relationship between astrobiology and cosmology and presents some of the challenges of multidisciplinary study. Modern physical theories dealing with the multiverse add a further dimension to the debate. With a selection of beautifully presented illustrations and a strong emphasis on constructing a unified methodology across disciplines, this book will appeal to graduate students and specialists who seek to rectify the fragmented nature of current astrobiological endeavour, as well as curious astrophysicists, biologists and SETI enthusiasts.