Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Number Theory
  • Language: en
  • Pages: 549

Number Theory

Number Theory is a newly translated and revised edition of the most popular introductory textbook on the subject in Hungary. The book covers the usual topics of introductory number theory: divisibility, primes, Diophantine equations, arithmetic functions, and so on. It also introduces several more advanced topics including congruences of higher degree, algebraic number theory, combinatorial number theory, primality testing, and cryptography. The development is carefully laid out with ample illustrative examples and a treasure trove of beautiful and challenging problems. The exposition is both clear and precise. The book is suitable for both graduate and undergraduate courses with enough material to fill two or more semesters and could be used as a source for independent study and capstone projects. Freud and Gyarmati are well-known mathematicians and mathematical educators in Hungary, and the Hungarian version of this book is legendary there. The authors' personal pedagogical style as a facet of the rich Hungarian tradition shines clearly through. It will inspire and exhilarate readers.

An Invitation to Abstract Mathematics
  • Language: en
  • Pages: 443

An Invitation to Abstract Mathematics

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes...

A First Course in Stochastic Calculus
  • Language: en
  • Pages: 270

A First Course in Stochastic Calculus

A First Course in Stochastic Calculus is a complete guide for advanced undergraduate students to take the next step in exploring probability theory and for master's students in mathematical finance who would like to build an intuitive and theoretical understanding of stochastic processes. This book is also an essential tool for finance professionals who wish to sharpen their knowledge and intuition about stochastic calculus. Louis-Pierre Arguin offers an exceptionally clear introduction to Brownian motion and to random processes governed by the principles of stochastic calculus. The beauty and power of the subject are made accessible to readers with a basic knowledge of probability, linear a...

A Bridge to Advanced Mathematics
  • Language: en
  • Pages: 544

A Bridge to Advanced Mathematics

Most introduction to proofs textbooks focus on the structure of rigorous mathematical language and only use mathematical topics incidentally as illustrations and exercises. In contrast, this book gives students practice in proof writing while simultaneously providing a rigorous introduction to number systems and their properties. Understanding the properties of these systems is necessary throughout higher mathematics. The book is an ideal introduction to mathematical reasoning and proof techniques, building on familiar content to ensure comprehension of more advanced topics in abstract algebra and real analysis with over 700 exercises as well as many examples throughout. Readers will learn a...

An Introduction to Real Analysis
  • Language: en
  • Pages: 280

An Introduction to Real Analysis

An Introduction to Real Analysis gives students of mathematics and related sciences an introduction to the foundations of calculus, and more generally, to the analytic way of thinking. The authors' style is a mix of formal and informal, with the intent of illustrating the practice of analysis and emphasizing the process as much as the outcome. The book is intended for use in a one- or two-term course for advanced undergraduates in mathematics and related fields who have completed two or three terms of a standard university calculus sequence.

Introduction to Proof Through Number Theory
  • Language: en
  • Pages: 465

Introduction to Proof Through Number Theory

Lighten up about mathematics! Have fun. If you read this book, you will have to endure bad math puns and jokes and out-of-date pop culture references. You'll learn some really cool mathematics to boot. In the process, you will immerse yourself in living, thinking, and breathing logical reasoning. We like to call this proofs, which to some is a bogey word, but to us it is a boogie word. You will learn how to solve problems, real and imagined. After all, math is a game where, although the rules are pretty much set, we are left to our imaginations to create. Think of this book as blueprints, but you are the architect of what structures you want to build. Make sure you lay a good foundation, for otherwise your buildings might fall down. To help you through this, we guide you to think and plan carefully. Our playground consists of basic math, with a loving emphasis on number theory. We will encounter the known and the unknown. Ancient and modern inquirers left us with elementary-sounding mathematical puzzles that are unsolved to this day. You will learn induction, logic, set theory, arithmetic, and algebra, and you may one day solve one of these puzzles.

Linear Algebra
  • Language: en
  • Pages: 395

Linear Algebra

This textbook is directed towards students who are familiar with matrices and their use in solving systems of linear equations. The emphasis is on the algebra supporting the ideas that make linear algebra so important, both in theoretical and practical applications. The narrative is written to bring along students who may be new to the level of abstraction essential to a working understanding of linear algebra. The determinant is used throughout, placed in some historical perspective, and defined several different ways, including in the context of exterior algebras. The text details proof of the existence of a basis for an arbitrary vector space and addresses vector spaces over arbitrary fields. It develops LU-factorization, Jordan canonical form, and real and complex inner product spaces. It includes examples of inner product spaces of continuous complex functions on a real interval, as well as the background material that students may need in order to follow those discussions. Special classes of matrices make an entrance early in the text and subsequently appear throughout. The last chapter of the book introduces the classical groups.

Introduction to Differential Equations: Second Edition
  • Language: en
  • Pages: 388

Introduction to Differential Equations: Second Edition

This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare

Partial Differential Equations
  • Language: en
  • Pages: 647

Partial Differential Equations

While partial differential equations (PDEs) are fundamental in mathematics and throughout the sciences, most undergraduate students are only exposed to PDEs through the method of separation of variations. This text is written for undergraduate students from different cohorts with one sole purpose: to facilitate a proficiency in many core concepts in PDEs while enhancing the intuition and appreciation of the subject. For mathematics students this will in turn provide a solid foundation for graduate study. A recurring theme is the role of concentration as captured by Dirac's delta function. This both guides the student into the structure of the solution to the diffusion equation and PDEs invol...

A Discrete Transition to Advanced Mathematics
  • Language: en
  • Pages: 540

A Discrete Transition to Advanced Mathematics

This textbook bridges the gap between lower-division mathematics courses and advanced mathematical thinking. Featuring clear writing and appealing topics, the book introduces techniques for writing proofs in the context of discrete mathematics. By illuminating the concepts behind techniques, the authors create opportunities for readers to sharpen critical thinking skills and develop mathematical maturity. Beginning with an introduction to sets and logic, the book goes on to establish the basics of proof techniques. From here, chapters explore proofs in the context of number theory, combinatorics, functions and cardinality, and graph theory. A selection of extension topics concludes the book,...