You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis presents a study of several combinatorial problems related to social choice and social networks. The main concern is their computational complexity, with an emphasis on their parameterized complexity. The goal is to devise efficient algorithms for each of the problems studied here, or to prove that, under widely-accepted assumptions, such algorithms cannot exist. The problems discussed in Chapter 3 and in Chapter 4 are about manipulating a given election, where some relationships between the entities of the election are assumed. This can be seen as if the election occurs on top of an underlying social network, connecting the voters participating in the election or the candidates ...
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...
The new edition of an introduction to multiagent systems that captures the state of the art in both theory and practice, suitable as textbook or reference. Multiagent systems are made up of multiple interacting intelligent agents—computational entities to some degree autonomous and able to cooperate, compete, communicate, act flexibly, and exercise control over their behavior within the frame of their objectives. They are the enabling technology for a wide range of advanced applications relying on distributed and parallel processing of data, information, and knowledge relevant in domains ranging from industrial manufacturing to e-commerce to health care. This book offers a state-of-the-art...
This book constitutes the proceedings of the 15th International Symposium on Algorithmic Game Theory, SAGT 2022, which took place in Colchester, UK, in September 2022. The 31 full papers included in this book were carefully reviewed and selected from 83 submissions. They were organized in topical sections as follows: Auctions, markets and mechanism design; computational aspects in games; congestion and network creation games; data sharing and learning; social choice and stable matchings.
The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose "queries," usually in the form of unlabeled data instances to be labeled by an "oracle" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries m...
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielde...
Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating ...
This book constitutes the thoroughly refereed conference proceedings of the 4th International Conference on Algorithmic Decision Theory , ADT 2015, held in September 2015 in Lexington, USA. The 32 full papers presented were carefully selected from 76 submissions. The papers are organized in topical sections such as preferences; manipulation, learning and other issues; utility and decision theory; argumentation; bribery and control; social choice; allocation and other problems; doctoral consortium.
This textbook connects three vibrant areas at the interface between economics and computer science: algorithmic game theory, computational social choice, and fair division. It thus offers an interdisciplinary treatment of collective decision making from an economic and computational perspective. Part I introduces to algorithmic game theory, focusing on both noncooperative and cooperative game theory. Part II introduces to computational social choice, focusing on both preference aggregation (voting) and judgment aggregation. Part III introduces to fair division, focusing on the division of both a single divisible resource ("cake-cutting") and multiple indivisible and unshareable resources ("multiagent resource allocation"). In all these parts, much weight is given to the algorithmic and complexity-theoretic aspects of problems arising in these areas, and the interconnections between the three parts are of central interest.
Social choice theory deals with aggregating the preferences of multiple individuals regarding several available alternatives, a situation colloquially known as voting. There are many different voting rules in use and even more in the literature, owing to the various considerations such an aggregation method should take into account. The analysis of voting scenarios becomes particularly challenging in the presence of strategic voters, that is, voters that misreport their true preferences in an attempt to obtain a more favorable outcome. In a world that is tightly connected by the Internet, where multiple groups with complex incentives make frequent joint decisions, the interest in strategic v...