You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph explains and analyzes the principles of a quantum-geometric framework for the unification of general relativity and quantum theory. By taking advantage of recent advances in areas like fibre and superfibre bundle theory, Krein spaces, gauge fields and groups, coherent states, etc., these principles can be consistently incorporated into a framework that can justifiably be said to provide the foundations for a quantum extrapolation of general relativity. This volume aims to present this approach in a way which places as much emphasis on fundamental physical ideas as on their precise mathematical implementation. References are also made to the ideas of Einstein, Bohr, Born, Dirac, Heisenberg and others, in order to set the work presented here in an appropriate historical context.
Cos'è il teorema della proiezione di Hilbert In matematica, il teorema della proiezione di Hilbert è un famoso risultato dell'analisi convessa che dice che per ogni vettore in uno spazio di Hilbert e ogni convesso chiuso non vuoto esiste un vettore unico per il quale è minimizzato sui vettori ; cioè tale che per ogni Come trarrai vantaggio (I) Approfondimenti e convalide sui seguenti argomenti: Capitolo 1: Hilbert Teorema della proiezione Capitolo 2: Spazio di Banach Capitolo 3: Spazio del prodotto interno Capitolo 4: Teorema della rappresentazione di Riesz Capitolo 5: Operatore autoaggiunto Capitolo 6: Classe traccia Capitolo 7: Operatore (fisica) Capitolo 8: Spazio di Hilbert Capitolo 9: Norma (matematica) Capitolo 10: Analisi convessa (II) Rispondere alle principali domande del pubblico sul teorema della proiezione di Hilbert. (III) Mondo reale esempi di utilizzo del teorema della proiezione di Hilbert in molti campi. A chi è rivolto questo libro Professionisti, studenti universitari e laureati, appassionati, hobbisti e coloro che vogliono andare oltre le conoscenze o le informazioni di base per qualsiasi tipo di teorema della proiezione di Hilbert.
¿Qué es el teorema de proyección de Hilbert? En matemáticas, el teorema de proyección de Hilbert es un famoso resultado del análisis convexo que dice que para cada vector en un espacio de Hilbert y cada convexo cerrado no vacío existe un vector único para el cual se minimiza sobre los vectores; es decir, tal que por cada ¿Cómo te beneficiarás? (I) Insights y validaciones sobre los siguientes temas: Capítulo 1: Teorema de proyección de Hilbert Capítulo 2: Espacio Banach Capítulo 3: Espacio interior del producto Capítulo 4: Teorema de representación de Riesz Capítulo 5: Operador autoadjunto Capítulo 6: Clase de seguimiento Capítulo 7: Operador (física) Capítulo 8: Espacio...
Qu'est-ce que le théorème de projection de Hilbert En mathématiques, le théorème de projection de Hilbert est un résultat célèbre de l'analyse convexe qui dit que pour chaque vecteur dans un espace Hilbert et chaque convexe fermé non vide il existe un vecteur unique pour lequel est minimisé sur les vecteurs ; c'est-à-dire de telle sorte que pour chaque Comment vous en bénéficierez (I) Informations et validations sur les sujets suivants : Chapitre 1 : Hilbert Théorème de projection Chapitre 2 : Espace de Banach Chapitre 3 : Espace produit interne Chapitre 4 : Théorème de représentation de Riesz Chapitre 5 : Opérateur auto-adjoint Chapitre 6 : Classe Trace Chapitre 7 : Opér...
힐베르트 투영 정리란 무엇입니까 수학에서 힐베르트 투영 정리는 모든 벡터에 대해 힐베르트 공간에서 비어 있지 않은 모든 닫힌 볼록 고유한 벡터가 존재합니다 무엇을 위해 벡터에 대해 최소화됩니다. 즉, 모든 혜택을 받는 방법 (I) 다음 주제에 대한 통찰력 및 검증: 1장: 힐베르트 투영 정리 2장: 바나흐 공간 3장: 내적 공간 4장: 리즈 표현 정리 5장: 자기 수반 연산자 6장: 추적 클래스 7장: 연산자(물리) 8장: 힐베르트 공간 9: 노름(수학) 10장: 볼록 분석 (II) 힐베르트 투영 정리에 관한 대중의 주요 질문에 답합니다. (III) 실제 세계 다양한 분야에서 힐베르트 투영 정리의 활용 사례를 소개합니다. 이 책은 누구를 위한 책인가요? 전문가, 학부 및 대학원생, 열성 팬, 취미생활자, 모든 종류의 힐베르트 투영 정리에 대한 기본 지식이나 정보를 넘어서고 싶은 사람들.
ヒルベルト射影定理とは 数学におけるヒルベルト射影定理は、凸解析の有名な結果です。ヒルベルト空間で そして空でないすべての閉じた凸面 固有のベクトルが存在します。そのために はベクトル上で最小化されます。つまり、そのようなものです。すべての どのようなメリットがあるか (I) 以下のトピックに関する洞察と検証: 第 1 章: ヒルベルト射影定理 第 2 章: バナッハ空間 第 3 章: 内積空間 第 4 章: リース表現定理 第 5 章:自己随伴演算子 第 6 章: トレース クラス 第 7 章: 演算子 (物理学) 第 8 章: ヒルベルト空間 第 8 章9: ノルム (数学) 第 10 章: 凸解析 (II) ヒルベルト射影定理に関する一般のよくある質問に答える。 (III) 現実世界さまざまな分野でのヒルベルト射影定理の使用例。 本書の対象者 専門家、大学生、大学院生、愛好家、愛好家、あらゆる種類のヒルベルト射影定理に関する基本的な知識や情報を超えたい人。
Was ist der Hilbert-Projektionssatz? In der Mathematik ist der Hilbert-Projektionssatz ein berühmtes Ergebnis der Konvexanalyse, der besagt, dass es für jeden Vektor in einem Hilbert-Raum und für jede nichtleere geschlossene Konvexheit einen eindeutigen Vektor gibt, für den über die Vektoren minimiert wird; das heißt, so dass für jeden Wie Sie davon profitieren (I) Erkenntnisse und Validierungen zu den folgenden Themen: Kapitel 1: Hilbert-Projektionssatz Kapitel 2: Banachraum Kapitel 3: Innerer Produktraum Kapitel 4: Riesz-Darstellungssatz Kapitel 5: Selbstadjungierter Operator Kapitel 6: Trace-Klasse Kapitel 7: Operator (Physik) Kapitel 8: Hilbertraum Kapitel 9: Norm (Mathematik) Kapitel 10: Konvexe Analyse (II) Beantwortung der häufigsten öffentlichen Fragen zum Hilbert-Projektionssatz. (III) Beispiele aus der Praxis für die Verwendung des Hilbert-Projektionssatzes in vielen Bereichen. Für wen dieses Buch ist Fachleute, Studenten und Doktoranden, Enthusiasten, Hobbyisten und diejenigen, die über das Grundwissen oder die Informationen zum Hilbert-Projektionssatz hinausgehen möchten.
For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists...
This comprehensive volume gives a balanced and systematic treatment of both the interpretation and the mathematical-conceptual foundations of quantum mechanics. It is written in a pedagogical style and addresses many thorny problems of fundamental physics. The first aspect concerns Interpretation. The author raises the central problems: formalism, measurement, non-locality, and causality. The main positions on these subjects are presented and critically analysed. The aim is to show that the main schools can converge on a core interpretation. The second aspect concerns Foundations. Here it is shown that the whole theory can be grounded on information theory. The distinction between information and signal leads us to integrating quantum mechanics and relativity. Category theory is presented and its significance for quantum information shown; the logic and epistemological bases of the theory are assessed. Of relevance to all physicists and philosophers with an interest in quantum theory and its foundations, this book is destined to become a classic work.
The important changes quantum mechanics has undergone in recent years are reflected in this approach for students. A strong narrative and over 300 worked problems lead the student from experiment, through general principles of the theory, to modern applications. Stepping through results allows students to gain a thorough understanding. Starting with basic quantum mechanics, the book moves on to more advanced theory, followed by applications, perturbation methods and special fields, and ending with developments in the field. Historical, mathematical and philosophical boxes guide the student through the theory. Unique to this textbook are chapters on measurement and quantum optics, both at the forefront of current research. Advanced undergraduate and graduate students will benefit from this perspective on the fundamental physical paradigm and its applications. Online resources including solutions to selected problems, and 200 figures, with colour versions of some figures, are available at www.cambridge.org/Auletta.