You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
This book originated from an introductory lecture course on dynamical systems given by the author for advanced students in mathematics and physics at ETH Zurich. The first part centers around unstable and chaotic phenomena caused by the occurrence of homoclinic points. The existence of homoclinic points complicates the orbit structure considerably and gives rise to invariant hyperbolic sets nearby. The orbit structure in such sets is analyzed by means of the shadowing lemma, whose proof is based on the contraction principle. This lemma is also used to prove S. Smale's theorem about the embedding of Bernoulli systems near homoclinic orbits. The chaotic behavior is illustrated in the simple me...
This book is an introduction to the field of dynamical systems, in particular, to the special class of Hamiltonian systems. The authors aimed at keeping the requirements of mathematical techniques minimal but giving detailed proofs and many examples and illustrations from physics and celestial mechanics. After all, the celestial $N$-body problem is the origin of dynamical systems and gave rise in the past to many mathematical developments. Jurgen Moser (1928-1999) was a professor atthe Courant Institute, New York, and then at ETH Zurich. He served as president of the International Mathematical Union and received many honors and prizes, among them the Wolf Prize in mathematics. Jurgen Moser is the author of several books, among them Stable and Random Motions in DynamicalSystems. Eduard Zehnder is a professor at ETH Zurich. He is coauthor with Helmut Hofer of the book Symplectic Invariants and Hamiltonian Dynamics. Information for our distributors: Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.
Self-contained introductory textbook suitable for a variety of one- or two-semester courses. Rich with examples, applications and exercises.
This book gives an introduction to index theory for symplectic matrix paths and its iteration theory, as well as applications to periodic solution problems of nonlinear Hamiltonian systems. The applications of these concepts yield new approaches to some outstanding problems. Particular attention is given to the minimal period solution problem of Hamiltonian systems and the existence of infinitely many periodic points of the Poincaré map of Lagrangian systems on tori.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...
Farber examines the geometrical, topological, and dynamical properties of closed one-forms, highlighting the relations between their global and local features. He describes the Novikov numbers and inequalities, the universal complex and its construction, Bott-type inequalities and those with Von Neumann Betti numbers, equivariant theory, the exactness of Novikov inequalities, the Morse theory of harmonic forms, and Lusternick-Schnirelman theory. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
The author proves Kontsevich's form of the mirror symmetry conjecture for (on the symplectic geometry side) a quartic surface in C .
The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundament...