You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
This is a new and greatly revised edition of Professor Chandrasekhar's classic book Liquid Crystals, first published in 1977. The subject of liquid crystals has grown into an exciting interdisciplinary research field with important practical applications. This book presents a systematic and self-contained treatment of the physics of the different types of thermotropic liquid crystals - the three classical types, nematic, cholesteric and smectic, and the newly discovered discotic type. Included is a description of the structures of these four main types and their polymorphic modifications, their thermodynamical, optical and mechanical properties and their behaviour under external fields. The basic principles underlying the major applications of liquid crystals in display technology and in thermography are also discussed. This book will be of great value to advanced students and researchers in condensed matter physics, chemical physics, materials science and technology with an interest in the physics, chemistry and applications of liquid crystals.
Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature — anisotropic physical properties of solids and rheological behavior of liquids — and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research.This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.
In 2016, it was 60 years since the eminent Soviet researcher, a disciple and a successor of Ivan Pavlov, Leon Orbeli had proclaimed the birth of a new branch of physiology, evolutionary physiology. In the same year, his ideas were embodied in the foundation in Leningrad, now Saint Petersburg, of the present Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences. This anniversary book includes the selected works carried out recently by his followers at the same institute. While addressing some hot aspects of evolutionary physiology and biochemistry, they demonstrate that this branch of physiology really represents a discipline in its own right.
The book intends to give a state-of-the-art overview of flexoelectricity, a linear physical coupling between mechanical (orientational) deformations and electric polarization, which is specific to systems with orientational order, such as liquid crystals. Chapters written by experts in the field shed light on theoretical as well as experimental aspects of research carried out since the discovery of flexoelectricity. Besides a common macroscopic (continuum) description the microscopic theory of flexoelectricity is also addressed. Electro-optic effects due to or modified by flexoelectricity as well as various (direct and indirect) measurement methods are discussed. Special emphasis is given to the role of flexoelectricity in pattern-forming instabilities. While the main focus of the book lies in flexoelectricity in nematic liquid crystals, peculiarities of other mesophases (bent-core systems, cholesterics, and smectics) are also reviewed. Flexoelectricity has relevance to biological (living) systems and can also offer possibilities for technical applications. The basics of these two interdisciplinary fields are also summarized.
During his distinguished scientific career, Alfred Saupe made important contributions to liquid crystal research, laying the groundwork on which much of the current knowledge and research in the physics of liquid crystals is based. This volume features papers presented by Prof. Saupe's colleagues, students and friends at a festschrift in honor of his 70th birthday. In addition, a selection of Prof. Saupe's articles are reprinted in the original German and in English translation, offering the reader a unique opportunity to see both the early work of this important scientist and widespread effect of that work on later discoveries in liquid crystal physics.
Electrooptic effects provide the basis for much liquid-crystal display technology. This book, by two of the leaders in liquid-crystal research in Russia, presents a complete and accessible treatment of virtually all known phenomena occurring in liquid crystals under the influence of electric fields.
This volume provides a record of the second ASI on the subject "Chemical Physics of Intercalation", which was patterned after its highly successful July 1987 predecessor. A growing community of chemists, physicists and materials scientists has come to appreciate the utility of extending the intercalation concept to generic guest-host compounds and solid solutions. The unifying themes are the complex phase equilibria which result from the competition between repulsive and attractive interactions between and within the guest and host substructures, the tunability of properties by control of guest concentration and superlattice periodicity, and the broad spectrum of potential applications which...