You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book is written for advanced graduate students. The topics have been selected to present methods and models that have applications in both particle physics and polymer physics. The lectures may serve as a guide through more recent research activities and illustrate the applicability of joint methods in different contexts. The book deals with analytic tools (e.g. random walk models, polymer expansion), numerical tools (e.g. Langevin dynamics), and common models (the three-dimensional Gross-Neveu-Model).
Publisher Description
The book comprises reviews on various topics of carbon nanotube research from specialists in the field, together with reports on on-going research. Both are intended to give a detailed picture of the remarkable properties of these one-dimensional nanostructures. Particular attention is paid to the synthesis, characterization, properties, and application of nanotubes. The book will be an indispensable introduction for the newcomers in the field as well as a valuable update for researchers in the field, for it contains the most recent developments.
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.
The conference focuses on the various applications of DNA for future molecular electronics. The main topics are the characterization of DNA conductivity, modification of DNA in order to generate biotemplated nanowires, and the use of DNA to connect or position other nanostructures such as carbon nanotubes.
Proceedings of the NATO Advanced Research Workshop on Frontiers in Molecular-Scale Science and Technology of Fullerence, Nanotube, Nanosilicon, Biopolymer (DNA, Protein) Multifunctional Nanosystems, Kyiv, Ukraine, 9-12 September 2001
Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials. In this completely revised and expanded third edition the authors also cover graphene as one of the most important research topics in the field of low dimensional materials for electronic applications. In addition, the topics of nanotubes and nanoribbons are widely enlarged to reflect the research advances of the last years.
Surface engineering is considered an important aspect in the reduction of friction and wear. This reference text discusses a wide range of surface engineering technologies along with applications in a comprehensive manner. The book describes various methods in surface engineering technology with a thorough explanation of various aspects of each process that comes under this domain. Apart from an enhanced explanation of the process and its attributes, this book also gives insight into the types of materials, applications, and optimization of surface engineering techniques. It discusses important topics including surface engineering of the functionality of graded materials, materials character...
Instabilities associated with hot electrons in semiconductors have been investigated from the beginning of transistor physics in the 194Os. The study of NDR and impact ionization in bulk material led to devices like the Gunn diode and the avalanche-photo-diode. In layered semiconductors domain formation in HEMTs can lead to excess gate leakage and to excess noise. The studies of hot electron transport parallel to the layers in heterostructures, single and multiple, have shown abundant evidence of electrical instability and there has been no shortage of suggestions concerning novel NDR mechanisms, such as real space transfer, scattering induced NDR, inter-sub band transfer, percolation effect...