You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Geodesy: The Concepts, Second Edition focuses on the processes, approaches, and methodologies employed in geodesy, including gravity field and motions of the earth and geodetic methodology. The book first underscores the history of geodesy, mathematics and geodesy, and geodesy and other disciplines. Discussions focus on algebra, geometry, statistics, symbolic relation between geodesy and other sciences, applications of geodesy, and the historical beginnings of geodesy. The text then ponders on the structure of geodesy, as well as functions of geodesy and geodetic theory and practice. The publication examines the motions, gravity field, deformations in time, and size and shape of earth. Topics include tidal phenomena, tectonic deformations, actual shape of the earth, gravity anomaly and potential, and observed polar motion and spin velocity variations. The elements of geodetic methodology, classes of mathematical models, and formulation and solving of problems are also mentioned. The text is a dependable source of data for readers interested in the concepts involved in geodesy.
Due to steadily improving experimental accuracy, relativistic concepts – based on Einstein’s theory of Special and General Relativity – are playing an increasingly important role in modern geodesy. This book offers an introduction to the emerging field of relativistic geodesy, and covers topics ranging from the description of clocks and test bodies, to time and frequency measurements, to current and future observations. Emphasis is placed on geodetically relevant definitions and fundamental methods in the context of Einstein’s theory (e.g. the role of observers, use of clocks, definition of reference systems and the geoid, use of relativistic approximation schemes). Further, the appl...
The uncertainty of measurement results is drawing attention of managers, metrologists and customers. The accuracy of measurements affects all of us in trade, commerce, safety, health care environmental protection and more. The quality of these measurements are regulated by a variety of government agencies. Measurement also plays an important role in manufacturing and service organizations. Use this book to learn more about metrology and the need for reliable measurements. You can also learn about measurement system and quality of measurement systems, objectives and methods. Statistical techniques in metrology are also explained. Examples of measurement data and random variables, probability ...
Praise for the Series:"This book will be a useful reference to control engineers and researchers. The papers contained cover well the recent advances in the field of modern control theory."-IEEE Group Correspondence"This book will help all those researchers who valiantly try to keep abreast of what is new in the theory and practice of optimal control."--Control
If you're looking for an up-to-date, easy-to-understand treatment of the GPS (Global Positioning System), this one-of-a-kind resource offers you the knowledge you need for your work, without bogging you down with advanced mathematics. It addresses all aspects of the GPS, emphasizes GPS applications, examines the GPS signal structure, and covers the key types of measurement being utilized in the field today.
None
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instr...
The third edition of this well-known textbook, first published in 1980, has been completely revised in order to adequately reflect the drastic changes which occured in the field of geodesy in the last twenty years. Reference systems are now well established by space techniques, which dominate positioning and gravity field determination. Terrestrial techniques still play an important role at local and regional applications, whereby remarkable progress has been made with respect to automatic data aquisition. Evaluation methods are now three-dimensional in principle, and have to take the gravity field into account. Geodetic control networks follow these developments, with far-reaching consequences for geodetic practice. Finally, the increased accuracy of geodetic products and high data rates have significantly increased the contributions of geodesy to geodynamics research, thus strengthening the role of geodesy within the geosciences. The present state of geodesy is illustrated by recent examples of instruments and results. An extensive reference list supports further studies.