You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book sets the standard on carbon materials for electrode design. For the first time, the leading experts in this field summarize the preparation techniques and specific characteristics together with established and potential applications of the different types of carbon-based electrodes. An introductory chapter on the properties of carbon together with chapters on the electrochemical characteristics and properties of the different modifications of carbon such as carbon nanotubes, graphene, carbon fiber, diamond or highly ordered pyrolytic graphite provide the reader with the basics on this fascinating and ubiquitous electrode material. Cutting-edge technologies such as carbon electrodes in efficient supercapacitors, Li-ion batteries and fuel cells, or electrodes prepared by screen-printing are discussed, giving a complete but concise overview about the topic. The clearly structured book helps newcomers to grasp easily the principles of carbon-based electrodes, while researchers in fundamental and applied electrochemistry will find new ideas for further research on related key technologies.
Because of their simple preparation and low expense, carbon pastes and carbon paste electrodes are widely used in a myriad of instrumental measurements. With an emphasis on practical applications, Electroanalysis with Carbon Paste Electrodes provides a comprehensive overview of carbon paste electrodes. The text offers a comprehensive and unpreceden
The book sets the standard on carbon materials for electrode design. For the first time, the leading experts in this field summarize the preparation techniques and specific characteristics together with established and potential applications of the different types of carbon-based electrodes. An introductory chapter on the properties of carbon together with chapters on the electrochemical characteristics and properties of the different modifications of carbon such as carbon nanotubes, graphene, carbon fiber, diamond or highly ordered pyrolytic graphite provide the reader with the basics on this fascinating and ubiquitous electrode material. Cutting-edge technologies such as carbon electrodes in efficient supercapacitors, Li-ion batteries and fuel cells, or electrodes prepared by screen-printing are discussed, giving a complete but concise overview about the topic. The clearly structured book helps newcomers to grasp easily the principles of carbon-based electrodes, while researchers in fundamental and applied electrochemistry will find new ideas for further research on related key technologies.
This book focuses on the development of high-performance carbon electrodes for sodium ion batteries (SIBs). By proposing folded-graphene as the high-density cathode with excellent rate capability, it provides insight into the interplay between oxygen functional groups and folded texture. It also highlights the superiority of ether electrolytes matching with carbon anodes, which are shown to deliver largely improved electrochemical performance. The achievements presented offer a valuable contribution to the carbon-based electrodes in SIBs.
In recent years the Japanese have funded a comprehensive study of carbon materials which incorporate other elements including boron, nitrogen and fluorine, hence the title of the project "Carbon Alloys".Coined in 1992, the phrase "Carbon Alloys" can be applied to those materials mainly composed of carbon materials in multi-component systems. The carbon atoms of each component have a physical and/or chemical interactive relationship with other atoms or compounds. The carbon atoms of the components may have different hybrid bonding orbitals to create quite different carbon components.Eiichi Yasuda and his team consider the definition of Carbon Alloys, present the results of the Carbon Alloys projects, describe typical Carbon Alloys and their uses, discuss recent techniques for their characterization, and finally, illustrate potential applications and future developments for Carbon Alloy science. The book contains over thirty chapters on these studies from as many researchers.The most modern of techniques, particularly in the area of spectroscopy, were used as diagnostic tools, and many of these are applicable to pure carbons also. Porosity in carbons received considerable attention.
None
It is well known that solid carbons can be found in various guises with different forms of bulk phases (graphites, diamonds and carbynes) as well as more molecular forms (fullerenes,nanotubes and graphenes) resulting from recent discoveries. The cause of this rich polymorphism is analyzed in the first part of this book (chapters 1-5) with the propensity of carbon atoms for forming different types of homopolar chemical bonds associated with variable coordination numbers. Precursor organic molecules and parent compounds are also described to establish specific links with this rich polymorphism. Then in a second part (chapters 6-10) a comparative review of the main classes of bulk physical properties is presented. This approach emphasizes in particular the electronic behavior of (pi) polyaromatic systems organized in plane and curved atomic sheets. Finally in a third part (chapters 11-15) the surface and interface characteristics are introduced together with the texture and morphology of these multiscale carbon materials. An overview of the main field of applications is related showing the large use and interest for these solids.
Volumes 26 and 27 are both concerned with reactions occurring at electrodes arising through the passage of current. They provide a comprehensive review of the study of electrode kinetics. The basic ideas and experimental methodology are presented in Volume 26 whilst Volume 27 deals with reactions at particular types of electrodes.Chapter 1 serves as an introduction to both volumes and is a survey of the fundamental principles of electrode kinetics. Chapter 2 deals with mass transport - how material gets to and from an electrode. Chapter 3 provides a review of linear sweep and cyclic voltammetry which constitutes an extensively used experimental technique in the field. Chapter 4 discusses a.c. and pulse methods which are a rich source of electrochemical information. Finally, chapter 5 discusses the use of electrodes in which there is forced convection, the so-called ``hydrodynamic electrodes''.
Current and Future Developments in Nanomaterials and Carbon Nanotubes presents thematic volumes that highlight research in the field of nanomaterials. The book series covers the theory and application of nanomaterials including carbon nanotubes, composites, metallic nanomaterials and much more. It is essential reading to researchers interested in keeping up to date with nanomaterial applications in a wide variety of fields such as medicine, engineering and biotechnology.