You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the IMU/AMS Special Session on Nonlinear Analysis and Optimization, held from June 16-19, 2014, at the Second Joint International Meeting of the Israel Mathematical Union (IMU) and the American Mathematical Society (AMS), Bar-Ilan and Tel-Aviv Universities, Israel, and the Workshop on Nonlinear Analysis and Optimization, held on June 12, 2014, at the Technion-Israel Institute of Technology. The papers in this volume cover many different topics in Nonlinear Analysis and Optimization, including: Taylor domination property for analytic functions in the complex disk, mappings with upper integral bounds for p -moduli, multiple Fourier transforms and trigono...
Functions of bounded variation represent an important class of functions. Studying their Fourier transforms is a valuable means of revealing their analytic properties. Moreover, it brings to light new interrelations between these functions and the real Hardy space and, correspondingly, between the Fourier transform and the Hilbert transform. This book is divided into two major parts, the first of which addresses several aspects of the behavior of the Fourier transform of a function of bounded variation in dimension one. In turn, the second part examines the Fourier transforms of multivariate functions with bounded Hardy variation. The results obtained are subsequently applicable to problems in approximation theory, summability of the Fourier series and integrability of trigonometric series.
This book sketches a path for newcomers into the theory of harmonic analysis on the real line. It presents a collection of both basic, well-known and some less known results that may serve as a background for future research around this topic. Many of these results are also a necessary basis for multivariate extensions. An extensive bibliography, as well as hints to open problems are included. The book can be used as a skeleton for designing certain special courses, but it is also suitable for self-study.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.
This volume gathers the contributions from outstanding mathematicians, such as Samuel Krushkal, Reiner Khnau, Chung Chun Yang, Vladimir Miklyukov and others.It will help researchers to solve problems on complex analysis and potential theory and discuss various applications in engineering. The contributions also update the reader on recent developments in the field. Moreover, a special part of the volume is completely devoted to the formulation of some important open problems and interesting conjectures.
The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
This volume gathers the contributions from outstanding mathematicians, such as Samuel Krushkal, Reiner Kühnau, Chung Chun Yang, Vladimir Miklyukov and others.It will help researchers to solve problems on complex analysis and potential theory and discuss various applications in engineering. The contributions also update the reader on recent developments in the field. Moreover, a special part of the volume is completely devoted to the formulation of some important open problems and interesting conjectures.
View the abstract.