You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
This categorical perspective on homotopy theory helps consolidate and simplify one's understanding of derived functors, homotopy limits and colimits, and model categories, among others.
This book develops the theory of infinite-dimensional categories by studying the universe, or ∞-cosmos, in which they live.
Designed for the intellectually curious, this book provides a solid foundation in basic probability theory in a charming style, without technical jargon. This text will immerse the reader in a mathematical view of the world, and teach them techniques to solve real-world problems both inside and outside the casino.
The articles in this volume grew out of a 2019 workshop, held at Johns Hopkins University, that was inspired by a belief that when mathematicians take time to reflect on the social forces involved in the production of mathematics, actionable insights result. Topics range from mechanisms that lead to an inclusion-exclusion dichotomy within mathematics to common pitfalls and better alternatives to how mathematicians approach teaching, mentoring and communicating mathematical ideas.
A graduate-level introduction to the homotopical technology in use at the forefront of modern algebraic topology.
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.
A short introduction ideal for students learning category theory for the first time.
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.