You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book features the reduction and removal of selenium in wastewater via bioremediation. Arranged over five chapters, this book provides information regarding the interaction between micro-organisms and selenium, and it also explains the biogeochemistry of selenium in engineered ecosystems designed for wastewater treatment. The analytical approaches currently adopted by the scientific community are also described and discussed. Readers will find examples of the biological treatment of selenium contaminated wastewater, and discover a concise overview of selenium removal processes that are currently implemented at lab-scale as well as at industrial scale.
This book presents an assortment of case-studies pertaining to the use of sustainable technologies for heavy metal removal and recovery from mining and metallurgical wastes, construction and demolition wastes, spent catalysts and electronic wastes. Wastewaters from diverse industrial and mining activities have caused pollution problems, but these sectors also serve as a hotspot for metal recovery. Several metal removal technologies based on physical, chemical and biological processes have been successfully implemented in full-scale operation, while metal recovery, which is beneficial for economic and environmental reasons, is still limited due to challenges arising from downstream processing...
This book provides a comprehensive overview of innovative remediation techniques and strategies for soils contaminated by heavy metals or organic compounds (e.g. petroleum hydrocarbons, NAPLs and chlorinated organic compounds). It discusses various novel chemical remediation approaches (in-situ and ex-situ) used alone and in combination with physical and/or thermal treatment. Further, it addresses the recovery of NAPLs, reuse of leaching solutions, and in-situ chemical reduction and oxidation, and explores the chemical enhancement of physical NAPLs recovery from both practical and theoretical perspectives. Also presenting the state-of-the-art in waste-assisted bioremediation to improve soil quality and the remediation of petroleum hydrocarbons, the book is a valuable resource for students, researchers and R&D professionals in industry engaged in the treatment of contaminated soils.
Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) ...
Critical minerals play a vital role in the ongoing energy transition, which aims to shift global energy systems towards more sustainable and low-carbon alternatives. These minerals, also known as critical minerals, are essential components in various clean energy technologies such as wind turbines, solar panels, electric vehicles, and energy storage systems. They possess unique properties that enable efficient energy generation, storage, and transmission. For instance, neodymium, a rare earth element, is crucial for the production of high-performance magnets used in wind turbines and electric motors. Lithium, another critical mineral, is a key component in rechargeable batteries powering ele...
Dr. Datta Madamwar holds a provisional patent related to the theme of this Research Topic. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
The use of trace elements to promote biogas production features prominently on the agenda for many biogas-producing companies. However, the application of the technique is often characterized by trial-and-error methodology due to the ambiguous and scarce basic knowledge on the impact of trace elements in anaerobic biotechnologies under different process conditions. This book describes and defines the broad landscape in the research area of trace elements in anaerobic biotechnologies, from the level of advanced chemistry and single microbial cells, through to engineering and bioreactor technology and to the fate of trace elements in the environment. The book results from the EU COST Action on...
Extensive industrialization has led to an increased release of toxic metals into the soil and air. Industrial waste can include mine overburden, bauxite residue, and E waste, and these can serve as a source of valuable recoverable metals. There are relatively simple methods to recycle these wastes, but they require additional chemicals, are expensive, and generate secondary waste that causes environmental pollution. Biohydrometallurgical processing is a cost-effective and ecofriendly alternative where biological processes help conserve dwindling ore resources and extract metals in a nonpolluting way. Microbes can be used in metal extraction from primary ores, waste minerals, and industrial a...
This volume includes the papers presented during the 1st Euro-Mediterranean Conference for Environmental Integration (EMCEI) which was held in Sousse, Tunisia in November 2017. This conference was jointly organized by the editorial office of the Euro-Mediterranean Journal for Environmental Integration in Sfax, Tunisia and Springer (MENA Publishing Program) in Germany. It aimed to give a more concrete expression to the Euro-Mediterranean integration process by supplementing existing North-South programs and agreements with a new multilateral scientific forum that emphasizes in particular the vulnerability and proactive remediation of the Euro-Mediterranean region from an environmental point o...