Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Special Relativity in General Frames
  • Language: en
  • Pages: 800

Special Relativity in General Frames

Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of g...

3+1 Formalism in General Relativity
  • Language: en
  • Pages: 304

3+1 Formalism in General Relativity

  • Type: Book
  • -
  • Published: 2012-02-27
  • -
  • Publisher: Springer

This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented,...

Special Relativity in General Frames
  • Language: en
  • Pages: 784

Special Relativity in General Frames

  • Type: Book
  • -
  • Published: 2013-11-27
  • -
  • Publisher: Springer

Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of g...

A Relativist's Toolkit
  • Language: en
  • Pages: 253

A Relativist's Toolkit

This 2004 textbook fills a gap in the literature on general relativity by providing the advanced student with practical tools for the computation of many physically interesting quantities. The context is provided by the mathematical theory of black holes, one of the most elegant, successful, and relevant applications of general relativity. Among the topics discussed are congruencies of timelike and null geodesics, the embedding of spacelike, timelike and null hypersurfaces in spacetime, and the Lagrangian and Hamiltonian formulations of general relativity. Although the book is self-contained, it is not meant to serve as an introduction to general relativity. Instead, it is meant to help the reader acquire advanced skills and become a competent researcher in relativity and gravitational physics. The primary readership consists of graduate students in gravitational physics. It will also be a useful reference for more seasoned researchers working in this field.

3+1 Formalism in General Relativity
  • Language: en
  • Pages: 304

3+1 Formalism in General Relativity

This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented,...

Mass and Motion in General Relativity
  • Language: en
  • Pages: 634

Mass and Motion in General Relativity

From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is ...

Gravitation
  • Language: en
  • Pages: 129

Gravitation

This primer proposes a journey from Newton's dynamics to Einstein's relativity. It constitutes a pedagogical, rigorous, and self-contained introduction to the concepts and mathematical formulation of gravitational physics.In particular, much attention is devoted to exploring and applying the basic tools of differential geometry, that is the language of general relativity. Real-world manifestations of relativity, such as time dilation, gravitational waves, and black holes, are also discussed in detail. This book is designed for third-year bachelor or first-year master students in theoretical physics, who are already familiar with Newton's physics, possibly had an introductory course on special relativity, and who are seeking to learn general relativity on a firm basis.

Isolated Neutron Stars: From the Surface to the Interior
  • Language: en
  • Pages: 601

Isolated Neutron Stars: From the Surface to the Interior

This book is a collation of the contributions presented at a major conference on isolated neutron stars held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years. The great variety of isolated neutron stars, from pulsars to magnetars, is well covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.

Numerical Relativity
  • Language: en
  • Pages: 844

Numerical Relativity

"This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes."--

The Problem of Time
  • Language: en
  • Pages: 917

The Problem of Time

  • Type: Book
  • -
  • Published: 2017-09-18
  • -
  • Publisher: Springer

This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quan...