You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Cla...
I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics covered include working memory; fear learning; education and memory; memory and future imagining; sleep and memory; emotion and memory; motivation and memory; inhibition in memory; attention and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning.
Fans of Chris Ferrie's Rocket Science for Babies, Astrophysics for Babies, and 8 Little Planets will love this introduction to the basic principles of probability for babies and toddlers! Help your future genius become the smartest baby in the room! It only takes a small spark to ignite a child's mind. If you took a bite out of a cookie and that bite has no candy in it, what is the probability that bite came from a candy cookie or a cookie with no candy? You and baby will find out the probability and discover it through different types of distribution. Yet another Baby University board book full of simple explanations of complex ideas written by an expert for your future genius! If you're looking for baby math books, probability for kids, or more Baby University board books to surprise your little one, look no further! Bayesian Probability for Babies offers fun early learning for your little scientist!
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name ...
Psychological Statistics: The Basics walks the reader through the core logic of statistical inference and provides a solid grounding in the techniques necessary to understand modern statistical methods in the psychological and behavioral sciences. This book is designed to be a readable account of the role of statistics in the psychological sciences. Rather than providing a comprehensive reference for statistical methods, Psychological Statistics: The Basics gives the reader an introduction to the core procedures of estimation and model comparison, both of which form the cornerstone of statistical inference in psychology and related fields. Instead of relying on statistical recipes, the book ...
Why psychology is in peril as a scientific discipline—and how to save it Psychological science has made extraordinary discoveries about the human mind, but can we trust everything its practitioners are telling us? In recent years, it has become increasingly apparent that a lot of research in psychology is based on weak evidence, questionable practices, and sometimes even fraud. The Seven Deadly Sins of Psychology diagnoses the ills besetting the discipline today and proposes sensible, practical solutions to ensure that it remains a legitimate and reliable science in the years ahead. In this unflinchingly candid manifesto, Chris Chambers shows how practitioners are vulnerable to powerful biases that undercut the scientific method, how they routinely torture data until it produces outcomes that can be published in prestigious journals, and how studies are much less reliable than advertised. Left unchecked, these and other problems threaten the very future of psychology as a science—but help is here.
This book provides an overview of the developments in the area of Bayesian evaluation of informative hypotheses that took place since the publication of the ?rst paper on this topic in 2001 [Hoijtink, H. Con?rmatory latent class analysis, model selection using Bayes factors and (pseudo) likelihood ratio statistics. Multivariate Behavioral Research, 36, 563–588]. The current state of a?airs was presented and discussed by the authors of this book during a workshop in Utrecht in June 2007. Here we would like to thank all authors for their participation, ideas, and contributions. We would also like to thank Sophie van der Zee for her editorial e?orts during the construction of this book. Another word of thanks is due to John Kimmel of Springer for his con?dence in the editors and authors. Finally, we would like to thank the Netherlands Organization for Scienti?c Research (NWO) whose VICI grant (453-05-002) awarded to the ?rst author enabled the organization of the workshop, the writing of this book, and continuation of the research with respect to Bayesian evaluation of informative hypotheses.
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
V. Methodology: E. J. Wagenmakers (Volume Editor) Topics covered include methods and models in categorization; cultural consensus theory; network models for clinical psychology; response time modeling; analyzing neural time series data; models and methods for reinforcement learning; convergent methods of memory research; theories for discriminating signal from noise; bayesian cognitive modeling; mathematical modeling in cognition and cognitive neuroscience; the stop-signal paradigm; hypothesis testing and statistical inference; model comparison in psychology; fmri; neural recordings; open science; neural networks and neurocomputational modeling; serial versus parallel processing; methods in psychophysics.