Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Principles of Surface-Enhanced Raman Spectroscopy
  • Language: en
  • Pages: 688

Principles of Surface-Enhanced Raman Spectroscopy

  • Type: Book
  • -
  • Published: 2008-11-17
  • -
  • Publisher: Elsevier

SERS was discovered in the 1970s and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom touched upon as a coherent unit during most undergraduate studies in physics or chemistry. This book in...

Surface Enhanced Raman Spectroscopy
  • Language: en
  • Pages: 97

Surface Enhanced Raman Spectroscopy

Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

Elements of Mathematical Analysis
  • Language: en
  • Pages: 127

Elements of Mathematical Analysis

This book provides a comprehensive yet informal introduction to differentiating and integrating real functions with one variable. It also covers basic first-order differential equations and introduces higher-dimensional differentiation and integration. The focus is on significant theoretical proofs, accompanied by illustrative examples for clarity. A comprehensive bibliography aids deeper understanding. The concept of a function's differential is a central theme, relating to the "differential" within integrals. The discussion of indefinite integrals (collections of antiderivatives) precedes definite integrals, naturally connecting the two. The Appendix offers essential math formulas, exercise properties, and an in-depth exploration of continuity and differentiability. Select exercise solutions are provided. This book suits short introductory math courses for novice physics/engineering students. It equips them with vital differential and integral calculus tools for real-world applications. It is also useful for first-year undergraduates, reinforcing advanced calculus foundations for better Physics comprehension.

Seven Fundamental Concepts in Spacetime Physics
  • Language: en
  • Pages: 115

Seven Fundamental Concepts in Spacetime Physics

The book presents seven fundamental concepts in spacetime physics mostly by following Hermann Minkowski’s revolutionary ideas summarized in his 1908 lecture "Space and Time." These concepts are: spacetime, inertial and accelerated motion in spacetime physics, the origin and nature of inertia in spacetime physics, relativistic mass, gravitation, gravitational waves, and black holes. They have been selected because they appear to be causing most misconceptions and confusion in spacetime physics. This second edition has been revised to include additional clarifications, more detailed elaboration of the arguments and also new material published in the interim.

Beyond Einstein Gravity
  • Language: en
  • Pages: 120

Beyond Einstein Gravity

This book serves two main purposes: firstly, it shows, in a simple way, how the possible existence of an extra-spatial dimension would affect the predictions of four-dimensional General Relativity, a model known as the Brane world; secondly, it explains, step-by-step, a new technique called Minimal Geometric Deformation, which was introduced for the purpose of solving the correspondingly modified Einstein field equations. This method gave rise to the Gravitational Decoupling in General Relativity, which is widely used to solve the Einstein field equations in various contexts.

Isotope Low-Dimensional Structures
  • Language: en
  • Pages: 104

Isotope Low-Dimensional Structures

This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.

Selected Special Functions for Fundamental Physics
  • Language: en
  • Pages: 122

Selected Special Functions for Fundamental Physics

This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.

Introduction to Modified Gravity
  • Language: en
  • Pages: 106

Introduction to Modified Gravity

This book reviews various modified gravity models, including those with modifications in the pure gravitational sector; those involving extra fields, that is, scalar-tensor and vector-tensor gravity theories; gravity models with Lorentz symmetry breaking; and nonlocal gravity models. The authors discuss both classical and quantum aspects of these theories. The book is unique in bringing together all the current alternatives to Einstein gravity in one source and serves as an excellent starting point for graduate students and other newcomers seeking an overview. This second edition has been expanded with new results from a variety of approaches including f(R,Q,P) gravity, galileon gravity and massive gravity. Extended discussions of Lorentz-breaking terms and of non-local field theory have been added and a completely new chapter is devoted to models based on non-Riemannian geometry.

Compact Representations for the Design of Quantum Logic
  • Language: en
  • Pages: 126

Compact Representations for the Design of Quantum Logic

  • Type: Book
  • -
  • Published: 2017-08-21
  • -
  • Publisher: Springer

This book discusses modern approaches and challenges of computer-aided design (CAD) of quantum circuits with a view to providing compact representations of quantum functionality. Focusing on the issue of quantum functionality, it presents Quantum Multiple-Valued Decision Diagrams (QMDDs – a means of compactly and efficiently representing and manipulating quantum logic. For future quantum computers, going well beyond the size of present-day prototypes, the manual design of quantum circuits that realize a given (quantum) functionality on these devices is no longer an option. In order to keep up with the technological advances, methods need to be provided which, similar to the design and synt...

Graphene Oxide: Physics and Applications
  • Language: en
  • Pages: 161

Graphene Oxide: Physics and Applications

  • Type: Book
  • -
  • Published: 2014-10-23
  • -
  • Publisher: Springer

This book gives a comprehensive overview of graphene oxides (GO) from atomic structures and fundamental properties to technological applications. Atomic structural models, electronic properties, mechanical properties, optical properties, and functionalizing and compositing of GO are illustrated. Moreover, the excellent physical and chemical properties offer GO promising applications in electronic nanodevices, chemical sensors and catalyst, energy storage, and biotechnology, which are also presented in this book. Therefore, this book is of interest to researchers in physics, chemistry, materials science, and nanoscience.