You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Statistical agencies, research organizations, companies, and other data stewards that seek to share data with the public face a challenging dilemma. They need to protect the privacy and confidentiality of data subjects and their attributes while providing data products that are useful for their intended purposes. In an age when information on data subjects is available from a wide range of data sources, as are the computational resources to obtain that information, this challenge is increasingly difficult. The Handbook of Sharing Confidential Data helps data stewards understand how tools from the data confidentiality literature—specifically, synthetic data, formal privacy, and secure compu...
Over 1,800 total pages ... Included publications: Social Media and the Policy-Making Process a Traditional Novel Interaction Social Media Principles Applied to Critical Infrastructure Information Sharing Trolling New Media: Violent Extremist Groups Recruiting Through Social Media An Initial Look at the Utility of Social Media as a Foreign Policy Tool Indicators of Suicide Found on Social Networks: Phase 1 Validating the FOCUS Model Through an Analysis of Identity Fragmentation in Nigerian Social Media Providing Focus via a Social Media Exploitation Strategy Assessing the Use of Social Media in a Revolutionary Environment Social Media Integration into State-Operated Fusion Centers and Local L...
Quantitative research in social science research is changing rapidly. Researchers have vast and complex arrays of data with which to work: we have incredible tools to sift through the data and recognize patterns in that data; there are now many sophisticated models that we can use to make sense of those patterns; and we have extremely powerful computational systems that help us accomplish these tasks quickly. This book focuses on some of the extraordinary work being conducted in computational social science - in academia, government, and the private sector - while highlighting current trends, challenges, and new directions. Thus, Computational Social Science showcases the innovative methodological tools being developed and applied by leading researchers in this new field. The book shows how academics and the private sector are using many of these tools to solve problems in social science and public policy.
Delve into the realm of statistical methodology for mediation analysis with a Bayesian perspective in high dimensional data through this comprehensive guide. Focused on various forms of time-to-event data methodologies, this book helps readers master the application of Bayesian mediation analysis using R. Across ten chapters, this book explores concepts of mediation analysis, survival analysis, accelerated failure time modeling, longitudinal data analysis, and competing risk modeling. Each chapter progressively unravels intricate topics, from the foundations of Bayesian approaches to advanced techniques like variable selection, bivariate survival models, and Dirichlet process priors. With practical examples and step-by-step guidance, this book empowers readers to navigate the intricate landscape of high-dimensional data analysis, fostering a deep understanding of its applications and significance in diverse fields.
The 2010 edition of the European Conference on Computer Vision was held in Heraklion, Crete. The call for papers attracted an absolute record of 1,174 submissions. We describe here the selection of the accepted papers: Thirty-eight area chairs were selected coming from Europe (18), USA and Canada (16), and Asia (4). Their selection was based on the following criteria: (1) Researchers who had served at least two times as Area Chairs within the past two years at major vision conferences were excluded; (2) Researchers who served as Area Chairs at the 2010 Computer Vision and Pattern Recognition were also excluded (exception: ECCV 2012 Program Chairs); (3) Minimization of overlap introduced by A...
Information modelling and knowledge bases are now essential, not only to academics working in computer science, but also wherever information technology is applied. This book presents papers from the 26th International Conference on Information Modelling and Knowledge Bases (formerly the European Japanese Conference – EJC), which took place in Tampere, Finland, in June 2016. The conference provides a platform to bring together researchers and practitioners working with information modelling and knowledge bases, and the 33 accepted papers cover topics including: conceptual modelling; knowledge and information modelling and discovery; linguistic modelling; cross-cultural communication and social computing; environmental modelling and engineering; and multimedia data modelling and systems. All papers were improved and resubmitted for publication after the conference. Covering state-of-the-art research and practice, the book will be of interest to all those whose work involves information modelling and knowledge bases.
This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. It presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of...
Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requir...
This book constitutes the thoroughly refereed post-proceedings of the International Workshop on Statistical Network Analysis: Models, Issues, and New Directions held in Pittsburgh, PA, USA in June 2006 as associated event of the 23rd International Conference on Machine Learning, ICML 2006. It covers probabilistic methods for network analysis, paying special attention to model design and computational issues of learning and inference.
This book gathers the proceedings of the Sixth International Conference on Computational Science and Technology 2019 (ICCST2019), held in Kota Kinabalu, Malaysia, on 29–30 August 2019. The respective contributions offer practitioners and researchers a range of new computational techniques and solutions, identify emerging issues, and outline future research directions, while also showing them how to apply the latest large-scale, high-performance computational methods.