You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Cryopreservation has proven to be an important tool for the storage and conservation of plant genetic resources. This book is a unique resource for plant scientists, providing more than 100 ready-to-use cryopreservation protocols for plant types from algae and bryophytes to a range of flowering plants. It includes techniques for diverse plant parts such as dormant buds, pollen, and apical meristems and for cell types such as suspension and callus cultures.
Plant cell culture techniques are used increasingly in basic research for plant exploitation in industry, including for example, genetic engineering and micropropagation. The rapidly developing role of plant cell culture has necessitated this new edition of a widely acclaimed book. It covers a wide range of methods central to the exploitation of plant cell cultures in fundamental and applied research. This thoroughly revised work retains the combination of giving and explaining the general principles involved with the concise description of specific protocols, with appeal to a broad readership, that made the first edition so successful. Internationally recognized experts describe the techniques used for isolating and manipulating cell cultures, and the central importance in plant biotechnology. The book will be of major interest to researchers in plant sciences in general, and specifically to botany, plant physiology, and biotechnology students.
In addition to outlining the fundamental principles associated with the conservation of biological resources, freeze-drying and cryopreservation, this text is a compilation of cryptopreservation and freeze-drying methodologies applicable to different biological materiels, developed by expert laboratories.
This collection of essays is devoted to algae that are unexpectedly found in harsh habitats. The authors explain how these algae thrive in various temperature ranges, extreme pH values, salt solutions, UV radiation, dryness, heavy metals, anaerobic niches, various levels of illumination, and hydrostatic pressure. Not only do the essays provide clues about life on the edges of the Earth, but possibly elsewhere in the universe as well.
For many, the terms aging, maturation and senescence are synonymous and used interchangeably, but they should not be. Whereas senescence represents an endogenously controlled degenerative programme leading to plant or organ death, genetiC aging encompasses a wide array of passive degenerative genetiC processes driven primarily by exogenous factors (Leopold, 1975). Aging is therefore considered a consequence of genetiC lesions that accumulate over time, but by themselves do not necessarily cause death. These lesions are probably made more severe by the increase in size and complexity in trees and their attendant physiology. Thus while the withering of flower petals following pollination can b...
"Chapters 1 to 14 of in this book are based on papers presented at Sessions I, II and IV of an international workshop held from 5 to 7 March 2005 entitled, The Role of Biotechnology for the Characterisation and Conservation of Crop, Forestry, Animal and Fishery Genetic Resources, organized by the FAO Working Group on Biotechnology (FAO-WGB), the Fondazione per le Biotecnologie and the Italian Society of Agriculture Genetics (SIGA). The workshop took place at the Villa Gualino Congress Center in Turin, Italy ...The remaining two chapters, 15 and 16, are from the e-mail conference organized by the FAO-WGB roughly three months after the Turin workshop."--P. xi.
The long-term storage and maintenance of viable plant cells and organs is an area of active concern across the range of pure and applied plant sciences. In academic, government and commercial laboratories, the extended storage of propagules of one sort or another, with maximum protection of the genome from mutation and altered expression, is often a very necessary activity that can draw heavily on resources and effort. However, preservation per se is typically not an activity in its own right, but a facilitating technology that is part of a larger programme of work. Consequently, there are many laboratories that do not have the benefit of a specialist in storage technology, and have to delegate the responsibility to individuals, or teams, who are faced with a daunting learning curve. To maximise the chances of success, in the shortest possible time and with minimum losses, these researchers need sources of reference that are au thoritative and soundly based in practical experience.
While it is barely 50 years since the first reliable reports of the recovery of living cells frozen to cryogenic temperatures, there has been tremendous growth in the use of cryobiology in medicine, agriculture, horticulture, forestry, and the conservation of endangered or economically important species. As the first major text on cryobiolog
The book is designed to provide a review on the methods and current status of conservation of the tropical plant species. It will also provide the information on the richness of the tropical plant diversity, the need to conserve, and the potential utilization of the genetic resources. Future perspectives of conservation of tropical species will be discussed. Besides being useful to researchers and graduate students in the field, we hope to create a reference for a much wider audience who are interested in conservation of tropical plant diversity.
Preface: frozen spirits -- Introduction: within cold blood -- The technoscience of life at low temperature -- Latent life in biomedicine's ice age -- Temporalities of salvage -- "As yet unknown": life for the future -- "Before it's too late": life from the past -- Collecting, maintaining, reusing, and returning -- Managing the cold chain: making life mobile -- When futures arrive: lives after time -- Epilogue: thawing spirits