You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a comprehensive overview of fundamental principles and relevant technical issues associated with the behavior of solids exposed to high-energy radiation. These issues are important to the development of materials for existing fission reactors or future fusion and advanced reactors for energy production; to the development of electronic devices such as high-energy detectors; and to the development of novel materials for electronic and photonic applications.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
These papers present advancements in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied. Topics involving the application of electrochemistry to the nuclear fuel cycle, chemical sensors, energy storage, materials synthesis, refractory metals and their alloys, and alkali and alkaline earth metals are included. Also included are papers that discuss various technical, economic, and environmental issues associated with plant operations and industrial practices.
The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process. Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the development and optimization of energy materials, outlining their strengths, limitations, and future applications. Th...
Worldwide there are more than 430 nuclear power plants operating and more plants are being constructed or planned for construction. For nuclear power to be sustainable the nuclear fuel must be sustainable and there should be adequate nuclear fuel waste management program. Continuous technological advances will lead towards sustainable nuclear fuel through closed fuel cycles and advance fuel development. This focuses on challenges and issues that need to be addressed for better performance and safety of nuclear fuel in nuclear plants. These focused areas are on development of high conductivity new fuels, radiation induced corrosion, fuel behavior during abnormal events in reactor, and decontamination of radioactive material.
This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.
This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larg...
Physical Chemistry of Ionic Materials Discover the physical chemistry of charge carriers in the second edition of this popular textbook Ionic and electronic charge carriers are critical to the kinetic and electrochemical properties of ionic solids. These charge carriers are point defects and are decisive for electrical conductivity, mass transport, and storage phenomena. Generally, defects are deviations from the perfect structure, and if higher-dimensional, also crucial for the mechanical properties. The study of materials science and energy research therefore requires a thorough understanding of defects, in particular the charged point defects, their mobilities, and formation mechanisms. P...