You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Concentrates on developing intuition about evolutionary computation and problem solving skills and tool sets. Lots of applications and test problems, including a biotechnology chapter.
Evolutionary Algorithms in Engineering and Computer Science Edited by K. Miettinen, University of Jyväskylä, Finland M. M. Mäkelä, University of Jyväskylä, Finland P. Neittaanmäki, University of Jyväskylä, Finland J. Périaux, Dassault Aviation, France What is Evolutionary Computing? Based on the genetic message encoded in DNA, and digitalized algorithms inspired by the Darwinian framework of evolution by natural selection, Evolutionary Computing is one of the most important information technologies of our times. Evolutionary algorithms encompass all adaptive and computational models of natural evolutionary systems - genetic algorithms, evolution strategies, evolutionary programming...
This text is an introduction to the field of evolutionary computation. It approaches evolution strategies and genetic programming, as instances of a more general class of evolutionary algorithms.
Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.
Frontiers of Evolutionary Computation brings together eleven contributions by international leading researchers discussing what significant issues still remain unresolved in the field of Evolutionary Computation (Ee. They explore such topics as the role of building blocks, the balancing of exploration with exploitation, the modeling of EC algorithms, the connection with optimization theory and the role of EC as a meta-heuristic method, to name a few. The articles feature a mixture of informal discussion interspersed with formal statements, thus providing the reader an opportunity to observe a wide range of EC problems from the investigative perspective of world-renowned researchers. These prominent researchers include: Heinz M]hlenbein, Kenneth De Jong, Carlos Cotta and Pablo Moscato, Lee Altenberg, Gary A. Kochenberger, Fred Glover, Bahram Alidaee and Cesar Rego, William G. Macready, Christopher R. Stephens and Riccardo Poli, Lothar M. Schmitt, John R. Koza, Matthew J. Street and Martin A. Keane, Vivek Balaraman, Wolfgang Banzhaf and Julian Miller.
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScrip...
A comparison of evolutionary algorithms. Organic evolution and problem solving. Biological background. Evolutionary algorithms and artificial intelligence. Evolutionary algorithms and global optimization. Early approaches. Specific evolutionary algorithms. Evolution strategies. Evolutionary programming. Genetic algorithms. Artificial landscapes. An empirical comparison. Extending genetic algorithms. Selection. Selection mechanisms. Experimental investigation of selection. Mutation. Simplified genetic algorithms. An experiment in meta-evolution. Summary and outlook. Data for the fletcher-powell function. Data from selection experiments. Software. The multiprocessor environment; mathematical symbols.
The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.
Written for computer scientists and students, and computer literate artists, designers and specialists in evolutionary computation, this text brings together the most advanced work in the use of evolutionary computation for creative results.