Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Evolutionary Computation
  • Language: en
  • Pages: 267

Evolutionary Computation

  • Type: Book
  • -
  • Published: 2006-02-03
  • -
  • Publisher: MIT Press

This text is an introduction to the field of evolutionary computation. It approaches evolution strategies and genetic programming, as instances of a more general class of evolutionary algorithms.

Evolutionary Computation for Modeling and Optimization
  • Language: en
  • Pages: 600

Evolutionary Computation for Modeling and Optimization

Concentrates on developing intuition about evolutionary computation and problem solving skills and tool sets. Lots of applications and test problems, including a biotechnology chapter.

Evolutionary Computation
  • Language: en
  • Pages: 384

Evolutionary Computation

Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.

Evolutionary Algorithms in Engineering and Computer Science
  • Language: en
  • Pages: 512

Evolutionary Algorithms in Engineering and Computer Science

Evolutionary Algorithms in Engineering and Computer Science Edited by K. Miettinen, University of Jyväskylä, Finland M. M. Mäkelä, University of Jyväskylä, Finland P. Neittaanmäki, University of Jyväskylä, Finland J. Périaux, Dassault Aviation, France What is Evolutionary Computing? Based on the genetic message encoded in DNA, and digitalized algorithms inspired by the Darwinian framework of evolution by natural selection, Evolutionary Computing is one of the most important information technologies of our times. Evolutionary algorithms encompass all adaptive and computational models of natural evolutionary systems - genetic algorithms, evolution strategies, evolutionary programming...

Frontiers of Evolutionary Computation
  • Language: en
  • Pages: 288

Frontiers of Evolutionary Computation

Frontiers of Evolutionary Computation brings together eleven contributions by international leading researchers discussing what significant issues still remain unresolved in the field of Evolutionary Computation (Ee. They explore such topics as the role of building blocks, the balancing of exploration with exploitation, the modeling of EC algorithms, the connection with optimization theory and the role of EC as a meta-heuristic method, to name a few. The articles feature a mixture of informal discussion interspersed with formal statements, thus providing the reader an opportunity to observe a wide range of EC problems from the investigative perspective of world-renowned researchers. These prominent researchers include: Heinz M]hlenbein, Kenneth De Jong, Carlos Cotta and Pablo Moscato, Lee Altenberg, Gary A. Kochenberger, Fred Glover, Bahram Alidaee and Cesar Rego, William G. Macready, Christopher R. Stephens and Riccardo Poli, Lothar M. Schmitt, John R. Koza, Matthew J. Street and Martin A. Keane, Vivek Balaraman, Wolfgang Banzhaf and Julian Miller.

The Nature of Code
  • Language: en
  • Pages: 642

The Nature of Code

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScrip...

Introduction to Evolutionary Computing
  • Language: en
  • Pages: 307

Introduction to Evolutionary Computing

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques
  • Language: en
  • Pages: 282

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques

  • Type: Book
  • -
  • Published: 2010-06-30
  • -
  • Publisher: IGI Global

Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.

Evolutionary Algorithms in Engineering Applications
  • Language: en
  • Pages: 584

Evolutionary Algorithms in Engineering Applications

Evolutionary algorithms - an overview. Robust encodings in genetic algorithms. Genetic engineering and design problems. The generation of form using an evolutionary approach. Evolutionary optimization of composite structures. Flaw detection and configuration with genetic algorithms. A genetic algorithm approach for river management. Hazards in genetic design methodologies. The identification and characterization of workload classes. Lossless and Lossy data compression. Database design with genetic algorithms. Designing multiprocessor scheduling algorithms using a distributed genetic algorithm system. Prototype based supervised concept learning using genetic algorithms. Prototyping intelligen...

Evolutionary Algorithms in Theory and Practice
  • Language: en
  • Pages: 329

Evolutionary Algorithms in Theory and Practice

This book presents a unified view of evolutionary algorithms: the exciting new probabilistic search tools inspired by biological models that have immense potential as practical problem-solvers in a wide variety of settings, academic, commercial, and industrial. In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming. The algorithms are presented within a unified framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms, showing how mutation seems to b...