Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

New Trends on Analysis and Geometry in Metric Spaces
  • Language: en
  • Pages: 312

New Trends on Analysis and Geometry in Metric Spaces

This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Advances in Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 212

Advances in Harmonic Analysis and Partial Differential Equations

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Partial Differential Equations, held from April 21–22, 2018, at Northeastern University, Boston, Massachusetts. The book features a series of recent developments at the interface between harmonic analysis and partial differential equations and is aimed toward the theoretical and applied communities of researchers working in real, complex, and harmonic analysis, partial differential equations, and their applications. The topics covered belong to the general areas of the theory of function spaces, partial differential equations of elliptic, parabolic, and dissipative types, geometric optics, free boundary problems, and ergodic theory, and the emphasis is on a host of new concepts, methods, and results.

Paris-Princeton Lectures on Mathematical Finance 2002
  • Language: en
  • Pages: 190
The Geometry of Filtering
  • Language: en
  • Pages: 179

The Geometry of Filtering

Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a...

Fluctuation Theory for Lévy Processes
  • Language: en
  • Pages: 154

Fluctuation Theory for Lévy Processes

  • Type: Book
  • -
  • Published: 2007-04-25
  • -
  • Publisher: Springer

Lévy processes, that is, processes in continuous time with stationary and independent increments, form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, and of course finance, where they include particularly important examples having "heavy tails." Their sample path behaviour poses a variety of challenging and fascinating problems, which are addressed in detail.

Spectral Expansions of Non-Self-Adjoint Generalized Laguerre Semigroups
  • Language: en
  • Pages: 182

Spectral Expansions of Non-Self-Adjoint Generalized Laguerre Semigroups

View the abstract.

Séminaire de Probabilités XXXVIII
  • Language: en
  • Pages: 402

Séminaire de Probabilités XXXVIII

  • Type: Book
  • -
  • Published: 2004-11-15
  • -
  • Publisher: Springer

Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.

XI Symposium on Probability and Stochastic Processes
  • Language: en
  • Pages: 288

XI Symposium on Probability and Stochastic Processes

  • Type: Book
  • -
  • Published: 2015-07-17
  • -
  • Publisher: Birkhäuser

This volume features a collection of contributed articles and lecture notes from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes.

Optimal Transport
  • Language: en
  • Pages: 970

Optimal Transport

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.

Stochastic Geometric Analysis With Applications
  • Language: en
  • Pages: 557

Stochastic Geometric Analysis With Applications

This book is a comprehensive exploration of the interplay between Stochastic Analysis, Geometry, and Partial Differential Equations (PDEs). It aims to investigate the influence of geometry on diffusions induced by underlying structures, such as Riemannian or sub-Riemannian geometries, and examine the implications for solving problems in PDEs, mathematical finance, and related fields. The book aims to unify the relationships between PDEs, nonholonomic geometry, and stochastic processes, focusing on a specific condition shared by these areas known as the bracket-generating condition or Hörmander's condition. The main objectives of the book are:The intended audience for this book includes researchers and practitioners in mathematics, physics, and engineering, who are interested in stochastic techniques applied to geometry and PDEs, as well as their applications in mathematical finance and electrical circuits.