You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject ...
Abelian varieties and their moduli are a topic of increasing importance in today`s mathematics, applications ranging from algebraic geometry and number theory to mathematical physics. This collection of 17 refereed articles originates from the third "Texel Conference" held in 1999. Leading experts discuss and study the structure of the moduli spaces of abelian varieties and related spaces, giving an excellent view of the state of the art in this field.
This two-volume book collects the lectures given during the three months cycle of lectures held in Northern Italy between May and July of 2001 to commemorate Professor Bernard Dwork (1923 - 1998). It presents a wide-ranging overview of some of the most active areas of contemporary research in arithmetic algebraic geometry, with special emphasis on the geometric applications of the p-adic analytic techniques originating in Dwork's work, their connection to various recent cohomology theories and to modular forms. The two volumes contain both important new research and illuminating survey articles written by leading experts in the field. The book will provide an indispensable resource for all those wishing to approach the frontiers of research in arithmetic algebraic geometry.
This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes ...
View the abstract.
The world's leading authorities describe the state of the art in Serre's conjecture and rational points on algebraic varieties.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
This book is devoted to certain aspects of the theory of $p$-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of $p$-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelianvarieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of $p$-adic Hilbert modular forms and the geometry ofmoduli spaces of abelian varieties are related. This relation is used to study $q$-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-experts. It attempts to provide the necessary background to all concepts exposed in it. It may serve as a textbook for an advanced graduate course.