You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
The book discusses some key scientific and technological developments in computational and applied partial differential equations. It covers many areas of scientific computing, including multigrid methods, image processing, finite element analysis and adaptive computations. It also covers software technology, algorithms and applications. Most papers are of research level, and are contributed by some well-known mathematicians and computer scientists. The book will be useful to engineers, computational scientists and graduate students.
This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA...
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the o...
This textbook invites the reader to develop a holistic grounding in mathematical finance, where concepts and intuition play as important a role as powerful mathematical tools. Financial interactions are characterized by a vast amount of data and uncertainty; navigating the inherent dangers and hidden opportunities requires a keen understanding of what techniques to apply and when. By exploring the conceptual foundations of options pricing, the author equips readers to choose their tools with a critical eye and adapt to emerging challenges. Introducing the basics of gambles through realistic scenarios, the text goes on to build the core financial techniques of Puts, Calls, hedging, and arbitr...
The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.
This IMA Volume in Mathematics and its Applications RESOURCE RECOVERY, CONFINEMENT, AND REMEDIATION OF ENVIRONMENTAL HAZARDS contains papers presented at two successful one-week workshops: Confine ment and Remediation of Environmental Hazards held on January 15-19, 2000 and Resource Recovery, February 9-13, 2000. Both workshops were integral parts of the IMA annual program on Mathematics in Reactive Flow and Transport Phenomena, 1999-2000. We would like to thank John Chadam (University of Pittsburgh), Al Cunningham (Montana State Uni versity), Richard E. Ewing (Texas A&M University), Peter Ortoleva (In diana University), and Mary Fanett Wheeler (TICAM, The University of Texas at Austin) for ...
This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control. Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction. Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation.
The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLABĀ® supplement that gives basic codes and commands for solving differential equations. MATLABĀ® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.
"Comprises some of the key work presented at two IMA Wokshops on Computer Vision during fall of 2000."--Pref.