You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the second of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). It contains the most recent applications of valuation theory to a broad range of mathematical ideas. Valuation theory arose in the early part of the twentieth century in connection with number theory and continues to have many important applications to algebra, geometry, and analysis. The research and survey papers in this volume cover a variety of topics, including Galois theory, the Grunwald-Wang Theorem, algebraic geometry, resolution of singularities, curves over Prufer domains, model theory of valued fields and the Frobenius, Hardy fields, Hensel's Lemma, fixed point theorems, and computations in valued fields. It is suitable for graduate students and research mathematicians interested in algebra, algebraic geometry, number theory, and mathematical logic.
A. N. Parshin is a world-renowned mathematician who has made significant contributions to number theory through the use of algebraic geometry. Articles in this volume present new research and the latest developments in algebraic number theory and algebraic geometry and are dedicated to Parshin's sixtieth birthday. Well-known mathematicians contributed to this volume, including, among others, F. Bogomolov, C. Deninger, and G. Faltings. The book is intended for graduate students andresearch mathematicians interested in number theory, algebra, and algebraic geometry.
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
In this book the classical Greek construction problems are explored in a didactical, enquiry based fashion using Interactive Geometry Software (IGS). The book traces the history of these problems, stating them in modern terminology. By focusing on constructions and the use of IGS the reader is confronted with the same problems that ancient mathematicians once faced. The reader can step into the footsteps of Euclid, Viète and Cusanus amongst others and then by experimenting and discovering geometric relationships far exceed their accomplishments. Exploring these problems with the neusis-method lets him discover a class of interesting curves. By experimenting he will gain a deeper understanding of how mathematics is created. More than 100 exercises guide him through methods which were developed to try and solve the problems. The exercises are at the level of undergraduate students and only require knowledge of elementary Euclidean geometry and pre-calculus algebra. It is especially well-suited for those students who are thinking of becoming a mathematics teacher and for mathematics teachers.
This book is the second of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). It contains the most recent applications of valuation theory to a broad range of mathematical ideas. Valuation theory arose in the early part of the twentieth century in connection with number theory and continues to have many important applications to algebra, geometry, and analysis. The research and survey papers in this volume cover a variety of topics, including Galois theory, the Grunwald-Wang Theorem, algebraic geometry, resolution of singularities, curves over Prufer domains, model theory of valued fields and the Frobenius, Hardy fields, Hensel's Lemma, fixed point theorems, and computations in valued fields. It is suitable for graduate students and research mathematicians interested in algebra, algebraic geometry, number theory, and mathematical logic.
Providing the first comprehensive account of the widely unknown cooperation and friendship between Emmy Noether and Helmut Hasse, this book contains English translations of all available letters which were exchanged between them in the years 1925-1935. It features a special chapter on class field theory, a subject which was completely renewed in those years, Noether and Hasse being among its main proponents. These historical items give evidence that Emmy Noether's impact on the development of mathematics is not confined to abstract algebra but also extends to important ideas in modern class field theory as part of algebraic number theory. In her letters, details of proofs appear alongside conjectures and speculations, offering a rich source for those who are interested in the rise and development of mathematical notions and ideas. The letters are supplemented by extensive comments, helping the reader to understand their content within the mathematical environment of the 1920s and 1930s.
The unpublished writings of Helmut Hasse, consisting of letters, manuscripts and other papers, are kept at the Handschriftenabteilung of the University Library at Göttingen. Hasse had an extensive correspondence; he liked to exchange mathematical ideas, results and methods freely with his colleagues. There are more than 8000 documents preserved. Although not all of them are of equal mathematical interest, searching through this treasure can help us to assess the development of Number Theory through the 1920s and 1930s. The present volume is largely based on the letters and other documents its author has found concerning the Brauer-Hasse-Noether Theorem in the theory of algebras; this covers the years around 1931. In addition to the documents from the literary estates of Hasse and Brauer in Göttingen, the author also makes use of some letters from Emmy Noether to Richard Brauer that are preserved at the Bryn Mawr College Library (Pennsylvania, USA).
None
This translation of the 1987 German edition is an introduction into the classical parts of algebra with a focus on fields and Galois theory. It discusses nonstandard topics, such as the transcendence of pi, and new concepts are defined in the framework of the development of carefully selected problems. It includes an appendix with exercises and notes on the previous parts of the book, and brief historical comments are scattered throughout.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, ther...