Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Engineering Mathematics and Artificial Intelligence
  • Language: en
  • Pages: 530

Engineering Mathematics and Artificial Intelligence

  • Type: Book
  • -
  • Published: 2023-07-26
  • -
  • Publisher: CRC Press

The fields of Artificial Intelligence (AI) and Machine Learning (ML) have grown dramatically in recent years, with an increasingly impressive spectrum of successful applications. This book represents a key reference for anybody interested in the intersection between mathematics and AI/ML and provides an overview of the current research streams. Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications discusses the theory behind ML and shows how mathematics can be used in AI. The book illustrates how to improve existing algorithms by using advanced mathematics and offers cutting-edge AI technologies. The book goes on to discuss how ML can support mathematical modeling and how to simulate data by using artificial neural networks. Future integration between ML and complex mathematical techniques is also highlighted within the book. This book is written for researchers, practitioners, engineers, and AI consultants.

AI, Machine Learning and Deep Learning
  • Language: en
  • Pages: 347

AI, Machine Learning and Deep Learning

  • Type: Book
  • -
  • Published: 2023-06-05
  • -
  • Publisher: CRC Press

Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on ...

Four Internets
  • Language: en
  • Pages: 361

Four Internets

Four Internets offers a revelatory new approach for conceptualizing the Internet and understanding the sometimes rival values that drive its governance and stability. It unravels how tensions between the models play out across politics, economics, and technology, ultimately debating whether these models can continue to co-exist--or what might happen if any fall away.

Domain Adaptation in Computer Vision Applications
  • Language: en
  • Pages: 338

Domain Adaptation in Computer Vision Applications

  • Type: Book
  • -
  • Published: 2017-09-10
  • -
  • Publisher: Springer

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes de...

Backdoor Attacks against Learning-Based Algorithms
  • Language: en
  • Pages: 161

Backdoor Attacks against Learning-Based Algorithms

None

Machine Learning and Big Data Analytics
  • Language: en
  • Pages: 552

Machine Learning and Big Data Analytics

This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2022) is intended to be used as a reference book for researchers and professionals to share their research and reports of new technologies and applications in Machine Learning and Big Data Analytics like biometric Recognition Systems, medical diagnosis, industries, telecommunications, AI Petri Nets Model-Based Diagnosis, gaming, stock trading, Intelligent Aerospace Systems, robot control, law, remote sensing and scientific discovery agents and multiagent systems; and natural language and Web intelligence. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the advanced Scientific Technologies, provide a correlation of multidisciplinary areas and become a point of great interest for Data Scientists, systems architects, developers, new researchers and graduate level students. This volume provides cutting-edge research from around the globe on this field. Current status, trends, future directions, opportunities, etc. are discussed, making it friendly for beginners and young researchers.

The Cloud-to-Thing Continuum
  • Language: en
  • Pages: 183

The Cloud-to-Thing Continuum

The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support th...

Data Science & Exploration in Artificial Intelligence
  • Language: en
  • Pages: 574

Data Science & Exploration in Artificial Intelligence

  • Type: Book
  • -
  • Published: 2025-02-26
  • -
  • Publisher: CRC Press

The book captures the essence of the International Conference on Data Science & Exploration in Artificial Intelligence and offers a comprehensive exploration of cutting-edge research in AI, data science, and their applications. It covers a wide array of topics including advanced Data Science, IoT, Security, Cloud Computing, Networks, Security, Image, Video and Signal Processing, Computational Biology, Computer and Information Technology. It highlights innovative research contributions and practical applications, offering readers a detailed understanding of current trends and challenges. The findings emphasize the role of global collaboration and interdisciplinary approaches in pushing the boundaries of AI and data science. Selected papers published by Taylor and Francis showcase pioneering work that is shaping the future of these fields. This is an ideal read for AI and data science researchers, industry professionals, and students seeking to stay updated on the latest advancements and ethical considerations in these areas.

Federated Learning
  • Language: en
  • Pages: 353

Federated Learning

  • Type: Book
  • -
  • Published: 2024-09-20
  • -
  • Publisher: CRC Press

This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general ...

Question Answering for the Curated Web
  • Language: en
  • Pages: 182

Question Answering for the Curated Web

Question answering (QA) systems on the Web try to provide crisp answers to information needs posed in natural language, replacing the traditional ranked list of documents. QA, posing a multitude of research challenges, has emerged as one of the most actively investigated topics in information retrieval, natural language processing, and the artificial intelligence communities today. The flip side of such diverse and active interest is that publications are highly fragmented across several venues in the above communities, making it very difficult for new entrants to the field to get a good overview of the topic. Through this book, we make an attempt towards mitigating the above problem by prov...