You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Topics in Multivariate Approximation contains the proceedings of an international workshop on multivariate approximation held at the University of Chile in Santiago, Chile, on December 15-19, 1986. Leading researchers in the field discussed several problem areas related to multivariate approximation and tackled topics ranging from multivariate splines and fitting of scattered data to tensor approximation methods and multivariate polynomial approximation. Numerical grid generation and finite element methods were also explored, along with constrained interpolation and smoothing. Comprised of 22 chapters, this book first describes the application of Boolean methods of approximation in combinati...
Contents: Fast Algorithms for Simultaneous Polynomial Approximation (G Baszenski & M Tasche)α-Spline of Smoothing for Correlated Errors in Dimension Two (M Bozzini & L Lenarduzzi)New Developments in the Theory of Radial Basis Function Interpolation (M D Buhmann)Realization of Neural Networks with One Hidden Layer (C K Chui & X Li)A General Method for Constrained Curves with Boundary Conditions (P Costantini)Sign-Regular and Totally Positive Matrices: An Algorithmic Approach (M Gasca & J M Peña)Some Results on Blossoming and Multivariate B-Splines (R Gormaz & P-J Laurent)Riesz Bounds in Scattered Data Interpolation and L2-Approximation (K Jetter)On Multivariate Hermite Polynomial Interpolation (A Le Méhauté)Quantitative Approximation Results for Sigma-Pi-Type Neural Network Operators (B Lenze)Local Interpolation Schemes — From Curves to Surfaces (D Levin)Some Results on Approximation by Smoothing Dm-Splines (M C L de Silanes) Readership: Applied mathematicians.
The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research.
Optimization Techniques is a unique reference source to a diverse array of methods for achieving optimization, and includes both systems structures and computational methods. The text devotes broad coverage toa unified view of optimal learning, orthogonal transformation techniques, sequential constructive techniques, fast back propagation algorithms, techniques for neural networks with nonstationary or dynamic outputs, applications to constraint satisfaction,optimization issues and techniques for unsupervised learning neural networks, optimum Cerebellar Model of Articulation Controller systems, a new statistical theory of optimum neural learning, and the role of the Radial Basis Function in ...
This unique book is the key to computer contouring, exploring in detail the practice and principles using a personal computer. Contouring allows a three dimensional view in two dimensions and is a fundamental technique to represent spatial data. All aspects of this type of representation are covered including data preparation, selecting contour intervals, interpolation and griding, computing volumes and output and display. Formulated for both the novice and the experienced user, this book initially conducts the reader through a step by step explanation of PC software and its application to personal data, and then presents the rationale and concepts for contouring using the computer. Accompanying the book is a set of BASIC programs, in ASCII format, on an MS-DOS 360KB floppy disk. These programs implement eighteen interpolation methods, five gradient estimation techniques, and seven types of display, and are designed to be adapted or combined to suit a wide range of possible objectives concerning either the comparative study of contouring methodology or the practical production of contour displays.
The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature.
This book constitutes the refereed proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, held in Banff, Canada in July 2004. The 46 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on economics and game theory, online learning, inductive inference, probabilistic models, Boolean function learning, empirical processes, MDL, generalisation, clustering and distributed learning, boosting, kernels and probabilities, kernels and kernel matrices, and open problems.
This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine do...
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Padé theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.