You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pick up this book and dive into one of eight chapters relating mathematics to fiber arts! Amazing exposition transports any interested person on a mathematical exploration that is rigorous enough to capture the hearts of mathematicians. The zenith of creativity is achieved as readers are led to knit, crochet, quilt, or sew a project specifically designed to illuminate the mathematics through its physical realization. The beautiful finished pieces provide a visual understanding of the mathematics that can be shared with those who view them. If you love mathematics or fiber arts, this book is for you!
This book contains eight chapters that discuss the manufacturing methods, surface treatment, composite interfaces, microstructure-property relationships with underlying fundamental physical and mechanical principles, and applications of carbon fibers and their composites. Recently, carbon-based materials have received much attention for their many potential applications. The carbon fibers are very strong, stiff, and lightweight, enabling the carbon materials to deliver improved performance in several applications such as aerospace, sports, automotive, wind energy, oil and gas, infrastructure, defense, and semiconductors. However, the use of carbon fibers in cost-sensitive, high-volume industrial applications is limited because of their relatively high costs. However, its production is expected to increase because of its widespread use in high-volume industrial applications; therefore, the methods used for manufacturing carbon fibers and carbon-fiber-reinforced composites and their structures and characteristics need to be investigated.
Optical Fibers describes the theoretical basis—electromagnetic theories—of transmission characteristics of optical fibers. The material and fabrication technologies are not described systematically, but only briefly where necessary to assist comprehension of the transmission characteristics. This book comprises 11 chapters, with an introductory chapter that discusses such topics as optical communications before the advent of optical fibers, a technical background of the subject matter, and a summary of its history. Succeeding chapters then discuss basic concepts and equations; ray theory of optical fibers; wave theory of uniform-core fibers; wave theory of nonuniform-core fibers; and classification and comparison of various analysis methods. Other chapters cover optimum refractive-index profile of optical fibers; optical fibers having structural fluctuations; measurement of refractive-index profile of optical fibers; measurement of transmission characteristics of optical fibers; and finally, some concluding remarks. This book will be of interest to practitioners in the fields of electronic engineering and electrical communications.
The optical fiber based supercontinuum source has recently become a significant scientific and commercial success, with applications ranging from frequency comb production to advanced medical imaging. This one-of-a-kind book explains the theory of fiber supercontinuum broadening, describes the diverse operational regimes and indicates principal areas of applications, making it a very important guide for researchers and graduate students. With contributions from major figures and groups who have pioneered research in this field, the book describes the historical development of the subject, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers to confidently predict and model supercontinuum generation characteristics under realistic conditions.
The Handbook of Natural Fibres, Second Edition, Volume One: Types, Properties and Factors Affecting Breeding and Cultivation covers every aspect of natural fibers, their breeding, cultivation, processing and applications. This volume features fundamental discussions of each fiber, covering different stages of breeding and cultivation. Natural fibrous resources, both lignocellulosic and protein ones, are renewable, biodegradable, and nontoxic, making them an important source of sustainable textile solutions. A broad range of natural fibers are covered in this book, including cotton, jute, kenaf, flax, hemp, sisal, ramie, curaua, pineapple, bamboo, coir, sheep wool, and more. - Provides detailed instructions for how to carry out the latest scientific methods for identifying natural fibers - Explains properties of natural fibers that will be of interest to readers in growth fields like biocomposites and nanofibers - Includes a rare overview of emerging natural fibers and their uses, along with sources of further information
This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.
An exploration of the surface characteristics of fibres and textiles. It emphasizes how fibre surface affects permeability, stiffness, strength, dyeing, wrinkling, and other performance characteristics to optimize production. It also illustrates methods for developing wrinkle-resistant finishes on fibre surfaces using environmentally friendly techniques.
This book reviews the key technologies and characteristics of the modern man-made specialty fibers mainly developed in Japan. Since the production of many low-cost man-made fibers shifted to China and other Asian countries, Japanese companies have focused on production of high-quality, high-performance super fibers as well as highly functionalized fibers so-called ‘Shin-gosen’. ZylonTM and DyneemaTM manufactured by Toyobo, TechnoraTM produced by Teijin, and VectranTM developed by Kuraray are those examples of super fibers. Carbon fibers ToraycaTM from Toray have occupied the most advanced high-performance application area. Various types of polyester fibers having design-shaped cross-sect...
This book was begun after three of the present authors gave a series of in vited talks on the subject of the structure and properties of carbon filaments. This was at a conference on the subject of optical obscuration, for which submicrometer diameter filaments with high length-to-diameter ratios have potential applications. The audience response to these talks illustrated the need of just one scientific community for a broader knowledge of the struc ture and properties of these interesting materials. Following the conference it was decided to expand the material presented in the conference proceedings. The aim was to include in a single volume a description of the physical properties of carbon fibers and filaments. The research papers on this topic are spread widely in the literature and are found in a broad assortment of physics, chemistry, materials science and engineering and polymer science journals and conference proceedings (some of which are obscure). Accordingly, our goal was to produce a book on the subject which would enable students and other researchers working in the field to gain an overview of the subject up to about 1987.