You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With the proliferation of citizen reporting, smart mobile devices, and social media, an increasing number of people are beginning to generate information about events they observe and participate in. A significant fraction of this information contains multimedia data to share the experience with their audience. A systematic information modeling and management framework is necessary to capture this widely heterogeneous, schemaless, potentially humongous information produced by many different people. This book is an attempt to examine the modeling, storage, querying, and applications of such an event management system in a holistic manner. It uses a semantic-web style graph-based view of events, and shows how this event model, together with its query facility, can be used toward emerging applications like semi-automated storytelling. Table of Contents: Introduction / Event Data Models / Implementing an Event Data Model / Querying Events / Storytelling with Events / An Emerging Application / Conclusion
Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned results into a single ranked list. A large-scale metasearch engine has thousands or more component ...
Schema matching is the task of providing correspondences between concepts describing the meaning of data in various heterogeneous, distributed data sources. Schema matching is one of the basic operations required by the process of data and schema integration, and thus has a great effect on its outcomes, whether these involve targeted content delivery, view integration, database integration, query rewriting over heterogeneous sources, duplicate data elimination, or automatic streamlining of workflow activities that involve heterogeneous data sources. Although schema matching research has been ongoing for over 25 years, more recently a realization has emerged that schema matchers are inherentl...
Cloud computing has emerged as a successful paradigm of service-oriented computing and has revolutionized the way computing infrastructure is used. This success has seen a proliferation in the number of applications that are being deployed in various cloud platforms. There has also been an increase in the scale of the data generated as well as consumed by such applications. Scalable database management systems form a critical part of the cloud infrastructure. The attempt to address the challenges posed by the management of big data has led to a plethora of systems. This book aims to clarify some of the important concepts in the design space of scalable data management in cloud computing infr...
One of the application areas of data mining is the World Wide Web (WWW or Web), which serves as a huge, widely distributed, global information service for every kind of information such as news, advertisements, consumer information, financial management, education, government, e-commerce, health services, and many other information services. The Web also contains a rich and dynamic collection of hyperlink information, Web page access and usage information, providing sources for data mining. The amount of information on the Web is growing rapidly, as well as the number of Web sites and Web pages per Web site. Consequently, it has become more difficult to find relevant and useful information f...
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
This lecture introduces systematically into the problem of managing large data collections in peer-to-peer systems. Search over large datasets has always been a key problem in peer-to-peer systems and the peer-to-peer paradigm has incited novel directions in the field of data management. This resulted in many novel peer-to-peer data management concepts and algorithms, for supporting data management tasks in a wider sense, including data integration, document management and text retrieval. The lecture covers four different types of peer-to-peer data management systems that are characterized by the type of data they manage and the search capabilities they support. The first type are structured...
The Annual Conference of the European Association for Computer Science Logic (EACSL), CSL 2005, was held at the University of Oxford on 22 –25 August 2005.
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-in...
The chase has long been used as a central tool to analyze dependencies and their effect on queries. It has been applied to different relevant problems in database theory such as query optimization, query containment and equivalence, dependency implication, and database schema design. Recent years have seen a renewed interest in the chase as an important tool in several database applications, such as data exchange and integration, query answering in incomplete data, and many others. It is well known that the chase algorithm might be non-terminating and thus, in order for it to find practical applicability, it is crucial to identify cases where its termination is guaranteed. Another important ...