You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"The Classification Theorem is one of the main achievements of 20th century mathematics, but its proof has not yet been completely extricated from the journal literature in which it first appeared. This is the second volume in a series devoted to the presentation of a reorganized and simplified proof of the classification of the finite simple groups. The authors present (with either proof or reference to a proof) those theorems of abstract finite group theory, which are fundamental to the analysis in later volumes in the series. This volume provides a relatively concise and readable access to the key ideas and theorems underlying the study of finite simple groups and their important subgroup...
From reviews of the German edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions." Mathematical Reviews
17):~t? L It CIFDr- ! wei! unsre Weisheit Einfalt ist, From "Lohengrin", Richard Wagner At the time of the appearance of the first volume of this work in 1967, the tempestuous development of finite group theory had already made it virtually impossible to give a complete presentation of the subject in one treatise. The present volume and its successor have therefore the more modest aim of giving descriptions of the recent development of certain important parts of the subject, and even in these parts no attempt at completeness has been made. Chapter VII deals with the representation theory of finite groups in arbitrary fields with particular attention to those of non-zero charac teristic. That part of modular representation theory which is essentially the block theory of complex characters has not been included, as there are already monographs on this subject and others will shortly appear. Instead, we have restricted ourselves to such results as can be obtained by purely module-theoretical means.
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates that requires only a basic knowledge of group theory and general algebra. This theme is then expanded in a self-contained account providing an introduction to the application of character theory to the classification of simple groups. The book follows both strands of the theory: the exceptional characteristics of Suzuki and Feit and the block character theory of Brauer and includes refinements of original proofs that have become available as the subject has grown.
These conference papers should dispel any post-classification pessimism about the future of the theory of finite simple groups. Having noted that the theory developed for the classification touches on so few other branches of mathematics, the editor focuses on research in finite simple groups not central to the classification and presents a broad context for the recent results in the field. The papers are aimed at researchers and graduate students in algebra. They pay special attention to current research in sporadic geometry, the Fischer-Griess Monster group, and moonshine. Though all the papers are of high research value, the following papers of unusual significance should be singled out: Frenkel, Lepowsky, and Meurman's construction of the Monster group $F_1$; Conway and Queen's computation of characters of $E_8({\bf C})$; Norton's proof of the uniqueness of the Monster; and Mason's exploration of moonshine.
This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.
The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur-Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem.
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in ...
During the last 40 years the theory of finite groups has developed dramatically. The finite simple groups have been classified and are becoming better understood. Tools exist to reduce many questions about arbitrary finite groups to similar questions about simple groups. Since the classification there have been numerous applications of this theory in other branches of mathematics. Finite Group Theory develops the foundations of the theory of finite groups. It can serve as a text for a course on finite groups for students already exposed to a first course in algebra. It could supply the background necessary to begin reading journal articles in the field. For specialists it also provides a reference on the foundations of the subject. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.