You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text provides a comprehensive review of knowledge regarding nuclear fission from both the purely scientific and practical points of view. Topics discussed include fission barriers, spontaneous fission, neutron-induced fission cross-sections, photon- and electron-induced fission, charged particle induced fission fragment angular momentum and ternary fission. The characteristics of other reaction products are also discussed. Contributed articles from several distinguished nuclear scientists guarantee adequate treatment of some of the specialized research fields included in the text. Intended primarily as an introduction to nuclear fission for graduate students, this book will also provide useful information for nuclear physicists involved with research or teaching.
Nuclear Fusion and Fission delves into nuclear physics and the scientists responsible for the discovery of splitting and fusing an atom. The book begins with the very basic building blocks of science, breaking down the different types of energy and how we use them, the materials that make up an atom, and our search for the perfect renewable energy source. Set against the cultural backdrop of World War II, later chapters follow each significant theory that led to the creation of the worlds most dangerous weapon as well as some of its most widely used medical and food production processes today.
This hands-on textbook introduces physics and nuclear engineering students to the experimental and theoretical aspects of fission physics for research and applications through worked examples and problem sets. The study of nuclear fission is currently undergoing a renaissance. Recent advances in the field create the opportunity to develop more reliable models of fission predictability and to supply measurements and data to critical applications including nuclear energy, national security and counter-proliferation, and medical isotope production. An Introduction to Nuclear Fission provides foundational knowledge for the next generation of researchers to contribute to nuclear fission physics.
This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students.
This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students.
Nuclear Fission provides a comprehensive account of nuclear fission. This book is organized into 14 chapters. Chapter I introduces and discusses the discovery of fission, followed by a treatment of transition nucleus in Chapters II to VIII. Chapter IX deals with the theories of mass and energy distributions. The kinetic energy release in fission is described in Chapter X, while the distribution of mass and charge in fission is considered in Chapter XI. Chapters XII and XIII consider the emission of neutrons and ? rays from fission. Detailed studies of the ? particles accompanying fission are covered in the last chapter. This volume is intended for students, but is also valuable to research scientists interested in the physics and chemistry of fission.
This book provides advanced students and postdocs, as well as current practitioners of any field of nuclear physics involving fission an understanding of the nuclear fission process. Key topics covered are: fission cross sections, fission fragment yields, neutron and gamma emission from fission and key nuclear technologies and applications where fission plays an important role. It addresses both fundamental aspects of the fission process and fission-based technologies including combining quantitative and microscopic modeling.
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste manage...