Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Unsolved Problems in Number Theory
  • Language: en
  • Pages: 455

Unsolved Problems in Number Theory

Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.

Advances in Mathematical and Computational Sciences
  • Language: en
  • Pages: 512

Advances in Mathematical and Computational Sciences

This volume documents the contributions presented at The ICRTMPCS II International Conference on Advances in Mathematical and Computational Sciences. Entries focus on modern trends and techniques in branches of pure and applied mathematics, statistics, and computer science. Highlighting applications in coding theory, cryptography, graph theory, fuzzy theory, variance analysis, data analysis, and sampling theory.

Analytic Number Theory
  • Language: en
  • Pages: 378

Analytic Number Theory

  • Type: Book
  • -
  • Published: 2015-11-18
  • -
  • Publisher: Springer

This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient function, the Riemann zeta function and the Riemann...

Analytic Number Theory
  • Language: en
  • Pages: 434

Analytic Number Theory

The authors assemble a fascinating collection of topics from analytic number theory that provides an introduction to the subject with a very clear and unique focus on the anatomy of integers, that is, on the study of the multiplicative structure of the integers. Some of the most important topics presented are the global and local behavior of arithmetic functions, an extensive study of smooth numbers, the Hardy-Ramanujan and Landau theorems, characters and the Dirichlet theorem, the $abc$ conjecture along with some of its applications, and sieve methods. The book concludes with a whole chapter on the index of composition of an integer. One of this book's best features is the collection of problems at the end of each chapter that have been chosen carefully to reinforce the material. The authors include solutions to the even-numbered problems, making this volume very appropriate for readers who want to test their understanding of the theory presented in the book.

Algebraic Combinatorics and Applications
  • Language: en
  • Pages: 358

Algebraic Combinatorics and Applications

Proceedings of a high-level conference on discrete mathematics, focusing on group actions in the areas of pure mathematics, applied mathematics, computer science, physics, and chemistry. A useful tool for researchers and graduate students in discrete mathematics and theoretical computer science.

17 Lectures on Fermat Numbers
  • Language: en
  • Pages: 280

17 Lectures on Fermat Numbers

The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.

Transcendence in Algebra, Combinatorics, Geometry and Number Theory
  • Language: en
  • Pages: 544

Transcendence in Algebra, Combinatorics, Geometry and Number Theory

This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brașov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.

Ordinary Differential Equations
  • Language: en
  • Pages: 264

Ordinary Differential Equations

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

A Festival of Mathematics
  • Language: en
  • Pages: 232

A Festival of Mathematics

This book, inspired by the Julia Robinson Mathematics Festival, aims to engage students in mathematical discovery through fun and approachable problems that reveal deeper mathematical ideas. Each chapter starts with a gentle on-ramp, such as a game or puzzle requiring no more than simple arithmetic or intuitive concepts of symmetry. Follow-up problems and activities require intuitive logic and reveal more sophisticated notions of strategy and algorithms. Projects are designed so that progress is more important than any end goal, ensuring that students will learn something significant no matter how far they get. The process of understanding the questions and how they build on one another beco...

The Joys of Haar Measure
  • Language: en
  • Pages: 338

The Joys of Haar Measure

From the earliest days of measure theory, invariant measures have held the interests of geometers and analysts alike, with the Haar measure playing an especially delightful role. The aim of this book is to present invariant measures on topological groups, progressing from special cases to the more general. Presenting existence proofs in special cases, such as compact metrizable groups, highlights how the added assumptions give insight into just what the Haar measure is like; tools from different aspects of analysis and/or combinatorics demonstrate the diverse views afforded the subject. After presenting the compact case, applications indicate how these tools can find use. The generalisation ...