You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the ...
Financial Markets and the Real Economy reviews the current academic literature on the macroeconomics of finance.
The purpose of this monograph is to present a unified econometric framework for dealing with the issues of endogeneity in Markov-switching models and time-varying parameter models, as developed by Kim (2004, 2006, 2009), Kim and Nelson (2006), Kim et al. (2008), and Kim and Kim (2009). While Cogley and Sargent (2002), Primiceri (2005), Sims and Zha (2006), and Sims et al. (2008) consider estimation of simultaneous equations models with stochastic coefficients as a system, we deal with the LIML (limited information maximum likelihood) estimation of a single equation of interest out of a simultaneous equations model. Our main focus is on the two-step estimation procedures based on the control function approach, and we show how the problem of generated regressors can be addressed in second-step regressions.
This review lays out a research perspective on earnings quality. We provide an overview of alternative definitions and measures of earnings quality and a discussion of research design choices encountered in earnings quality research. Throughout, we focus on a capital markets setting, as opposed, for example, to a contracting or stewardship setting. Our reason for this choice stems from the view that the capital market uses of accounting information are fundamental, in the sense of providing a basis for other uses, such as stewardship. Because resource allocations are ex ante decisions while contracting/stewardship assessments are ex post evaluations of outcomes, evidence on whether, how and ...
This paper focuses on the determinants of the labor market situation of young people in developed countries and the developing world, with a particular emphasis on the role of vocational training and education policies. We highlight the role of demographic factors, economic growth and labor market institutions in explaining young people's transition into work. Subsequently, we assess differences between the setup and functioning of the vocational education and training policies across major world regions as an important driver of differential labor market situation of youth. Based on our analysis, we argue in favor of vocational education and training systems combining work experience and general education and provide some policy recommendations regarding the implementation of education and training systems adapted to a country's economic and institutional context.
This monograph bridges this gap and presents findings from a review of the alignment and innovation literature streams published between 1990 and 2020. The authors summarize approaches, challenges, and opportunities seen in the alignment and innovation literature streams.
The magic of search engines starts with crawling. While at first glance Web crawling may appear to be merely an application of breadth-first-search, the truth is that there are many challenges ranging from systems concerns such as managing very large data structures to theoretical questions such as how often to revisit evolving content sources. Web Crawling outlines the key scientific and practical challenges, describes the state-of-the-art models and solutions, and highlights avenues for future work. Web Crawling is intended for anyone who wishes to understand or develop crawler software, or conduct research related to crawling.
Architecture of a Database System presents an architectural discussion of DBMS design principles, including process models, parallel architecture, storage system design, transaction system implementation, query processor and optimizer architectures, and typical shared components and utilities.
Eye-Tracking for Visual Marketing examines the structure of the eye, the visual brain, eye-movements, and methods for recording and analyzing them. It describes the authors' theory and reviews eye-tracking applications in marketing based on this theory.