You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text provides an accessible account to the modern study of the geometry of four-manifolds. Prerequisites are a firm grounding in differential topology and geometry, as may be gained from the first year of a graduate course.
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin clas...
What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. —MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. — Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four...
One of the great achievements of contemporary mathematics is the new understanding of four dimensions. Michael Freedman and Frank Quinn have been the principals in the geometric and topological development of this subject, proving the Poincar and Annulus conjectures respectively. Recognition for this work includes the award of the Fields Medal of the International Congress of Mathematicians to Freedman in 1986. In Topology of 4-Manifolds these authors have collaborated to give a complete and accessible account of the current state of knowledge in this field. The basic material has been considerably simplified from the original publications, and should be accessible to most graduate students....
The emergence of topological quantum ?eld theory has been one of the most important breakthroughs which have occurred in the context of ma- ematical physics in the last century, a century characterizedbyindependent developments of the main ideas in both disciplines, physics and mathematics, which has concluded with two decades of strong interaction between them, where physics, as in previous centuries, has acted as a source of new mat- matics. Topological quantum ?eld theories constitute the core of these p- nomena, although the main drivingforce behind it has been the enormous e?ort made in theoretical particle physics to understand string theory as a theory able to unify the four fundamental interactions observed in nature. These theories set up a new realm where both disciplines pro?t from each other. Although the most striking results have appeared on the mathema- calside,theoreticalphysicshasclearlyalsobene?tted,sincethecorresponding developments have helped better to understand aspects of the fundamentals of ?eld and string theory.
From the reviews of the first edition: "This book exposes the beautiful confluence of deep techniques and ideas from mathematical physics and the topological study of the differentiable structure of compact four-dimensional manifolds, compact spaces locally modeled on the world in which we live and operate... The book is filled with insightful remarks, proofs, and contributions that have never before appeared in print. For anyone attempting to understand the work of Donaldson and the applications of gauge theories to four-dimensional topology, the book is a must." #Science#1 "I would strongly advise the graduate student or working mathematician who wishes to learn the analytic aspects of this subject to begin with Freed and Uhlenbeck's book." #Bulletin of the American Mathematical Society#2
This text is part of the IAS/Park City Mathematics series and focuses on gauge theory and the topology of four-manifolds.
The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic oper...
This book is the outcome of a seminar organized by Michael Freedman and Karen Uhlenbeck (the senior author) at the Mathematical Sciences Research Institute in Berkeley during its first few months of existence. Dan Freed (the junior author) was originally appointed as notetaker. The express purpose of the seminar was to go through a proof of Simon Donaldson's Theorem, which had been announced the previous spring. Donaldson proved the nonsmoothability of certain topological four-manifolds; a year earlier Freedman had constructed these manifolds as part of his solution to the four dimensional ; Poincare conjecture. The spectacular application of Donaldson's and Freedman's theorems to the existe...