You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
A set of detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area. Detailed proofs of key results are provided. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians.
This volume contains 36 research papers written by prominent researchers. The papers are based on a large satellite conference on scientific computing held at the International Congress of Mathematics (ICM) in Xi'an, China. Topics covered include a variety of subjects in modern scientific computing and its applications, such as numerical discretization methods, linear solvers, parallel computing, high performance computing, and applications to solid and fluid mechanics, energy, environment, and semiconductors. The book will serve as an excellent reference work for graduate students and researchers working with scientific computing for problems in science and engineering.
This text corresponds to a graduate mathematics course taught at Carnegie Mellon University in the spring of 1999. Included are comments added to the lecture notes, a bibliography containing 23 items, and brief biographical information for all scientists mentioned in the text, thus showing that the creation of scientific knowledge is an international enterprise.
After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.
Included in this volume are the Invited Talks given at the 5th International Congress of Industrial and Applied Mathematics. The authors of these papers are all acknowledged masters of their fields, having been chosen through a rigorous selection process by a distinguished International Program Committee. This volume presents an overview of contemporary applications of mathematics, with the coverage ranging from the rhythms of the nervous system, to optimal transportation, elasto-plasticity, computational drug design, hydrodynamic and meteorological modeling, and valuation in financial markets. Many papers are direct products of the computer revolution: grid generation, multi-scale modeling, high-dimensional numerical integration, nonlinear optimization, accurate floating-point computations and advanced iterative methods. Other papers demonstrate the close dependence on developments in mathematics itself, and the increasing importance of statistics. Additional topics relate to the study of properties of fluids and fluid-flows, or add to our understanding of Partial Differential Equations.
The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.
The book discusses some key scientific and technological developments in computational and applied partial differential equations. It covers many areas of scientific computing, including multigrid methods, image processing, finite element analysis and adaptive computations. It also covers software technology, algorithms and applications. Most papers are of research level, and are contributed by some well-known mathematicians and computer scientists. The book will be useful to engineers, computational scientists and graduate students.