Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Reinforcement Learning
  • Language: en
  • Pages: 653

Reinforcement Learning

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as tran...

Value-Based Planning for Teams of Agents in Stochastic Partially Observable Environments
  • Language: en
  • Pages: 222

Value-Based Planning for Teams of Agents in Stochastic Partially Observable Environments

In this thesis decision-making problems are formalized using a stochastic discrete-time model called decentralized partially observable Markov decision process (Dec-POMDP).

Deep Reinforcement Learning
  • Language: en
  • Pages: 414

Deep Reinforcement Learning

Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the world’s leading players.Deep reinforcement learning takes its inspiration from the fields of biology and psychology. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how sub...

Nanonetworks
  • Language: en
  • Pages: 388

Nanonetworks

Learn the basics—and more—of nanoscale computation and communication in this emerging and interdisciplinary field The field of nanoscale computation and communications systems is a thriving and interdisciplinary research area which has made enormous strides in recent years. A working knowledge of nanonetworks, their conceptual foundations, and their applications is an essential tool for the next generation of scientists and network engineers. Nanonetworks: The Future of Communication and Computation offers a thorough, accessible overview of this subject rooted in extensive research and teaching experience. Offering a concise and intelligible introduction to the key paradigms of nanoscale...

Algorithmic Decision Theory
  • Language: en
  • Pages: 451

Algorithmic Decision Theory

  • Type: Book
  • -
  • Published: 2013-10-28
  • -
  • Publisher: Springer

This book constitutes the thoroughly refereed conference proceedings of the Third International Conference on Algorithmic Decision Theory, ADT 2013, held in November 2013 in Bruxelles, Belgium. The 33 revised full papers presented were carefully selected from more than 70 submissions, covering preferences in reasoning and decision making, uncertainty and robustness in decision making, multi-criteria decision analysis and optimization, collective decision making, learning and knowledge extraction for decision support.

Interactive Collaborative Information Systems
  • Language: en
  • Pages: 598

Interactive Collaborative Information Systems

The increasing complexity of our world demands new perspectives on the role of technology in human decision making. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and traffic management, where humans need to engage in close collaborations with artificial systems to observe and understand the situation and respond in a sensible way. The book Interactive Collaborative Information Systems addresses techniques that support humans in situations in which complex information handling is required and that facilitate distributed decision-making. The theme inte...

Artificial Intelligence
  • Language: en
  • Pages: 176

Artificial Intelligence

This book contains a selection of the best papers of the 30th Benelux Conference on Artificial Intelligence, BNAIC 2018, held in ‘s-Hertogenbosch, The Netherlands, in November 2018. The 9 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 31 submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI and education, and data analysis.

Artificial Intelligence and Machine Learning
  • Language: en
  • Pages: 190

Artificial Intelligence and Machine Learning

This book contains a selection of the best papers of the 34th Benelux Conference on Artificial Intelligence, BNAIC/ BENELEARN 2022, held in Mechelen, Belgium, in November 2022. The 11 papers presented in this volume were carefully reviewed and selected from 134 regular submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI and education, and data analysis.

A Concise Introduction to Decentralized POMDPs
  • Language: en
  • Pages: 146

A Concise Introduction to Decentralized POMDPs

  • Type: Book
  • -
  • Published: 2016-06-03
  • -
  • Publisher: Springer

This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.

Reinforcement Learning for Cyber Operations
  • Language: en
  • Pages: 293

Reinforcement Learning for Cyber Operations

A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organization's cyber posture with RL a...