You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This historic work consists of several treatises that developed the first consistent, coherent, and systematic conception of algebraic equations. Originally published in 1591, it pioneered the notion of using symbols of one kind (vowels) for unknowns and of another kind (consonants) for known quantities, thus streamlining the solution of equations. Francois Viète (1540-1603), a lawyer at the court of King Henry II in Tours and Paris, wrote several treatises that are known collectively as The Analytic Art. His novel approach to the study of algebra developed the earliest articulated theory of equations, allowing not only flexibility and generality in solving linear and quadratic equations, but also something completely new—a clear analysis of the relationship between the forms of the solutions and the values of the coefficients of the original equation. Viète regarded his contribution as developing a "systematic way of thinking" leading to general solutions, rather than just a "bag of tricks" to solve specific problems. These essays demonstrate his method of applying his own ideas to existing usage in ways that led to clear formulation and solution of equations.
None
The author presents a complex history of the Pythagorean Theorem, examining the earliest evidence of knowledge of the theorem to Einstein's theory of relativity.
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
The Mathematics of Measurement is a historical survey of the introduction of mathematics to physics and of the branches of mathematics that were developed specifically for handling measurements, including dimensional analysis, error analysis, and the calculus of quantities.
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Gr...
Explores controversies in the history of numbers, especially the so-called negative and ''impossible'' numbers. This book uses history, puzzles, and lively debates to demonstrate how it is possible to devise new artificial systems of mathematical rules. It contends that departures from traditional rules can even be the basis for new applications.
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfully equipped with the necessary logic to develop a full understanding of geometric theorems. Following ...
This book presents detailed studies of the development of three kinds of number. In the first part the development of the natural numbers from Stone-Age times right up to the present day is examined not only from the point of view of pure history but also taking into account archaeological, anthropological and linguistic evidence. The dramatic change caused by the introduction of logical theories of number in the 19th century is also treated and this part ends with a non-technical account of the very latest developments in the area of Gdel's theorem. The second part is concerned with the development of complex numbers and tries to answer the question as to why complex numbers were not intr...