You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or t...
This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the...
This festschrift volume constitutes a unique tribute to Zohar Manna on the occasion of his 64th birthday. Like the scientific work of Zohar Manna, the 32 research articles span the entire scope of the logical half of computer science. Also included is a paean to Zohar Manna by the volume editor. The articles presented are devoted to the theory of computing, program semantics, logics of programs, temporal logic, automated deduction, decision procedures, model checking, concurrent systems, reactive systems, hardware and software verification, testing, software engineering, requirements specification, and program synthesis.
Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.
Geometric Modeling and Algebraic Geometry, though closely related, are traditionally represented by two almost disjoint scientific communities. Both fields deal with objects defined by algebraic equations, but the objects are studied in different ways. In 12 chapters written by leading experts, this book presents recent results which rely on the interaction of both fields. Some of these results have been obtained from a major European project in geometric modeling.
This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition in Bioinformatics, PRIB 2010, held in Nijmegen, The Netherlands, in September 2010. The 38 revised full papers presented were carefully reviewed and selected from 46 submissions. The field of bioinformatics has two main objectives: the creation and maintenance of biological databases and the analysis of life sciences data in order to unravel the mysteries of biological function. Computer science methods such as pattern recognition, machine learning, and data mining have a great deal to offer the field of bioinformatics.
The polygon-mesh approach to 3D modeling was a huge advance, but today its limitations are clear. Longer render times for increasingly complex images effectively cap image complexity, or else stretch budgets and schedules to the breaking point. Comprised of contributions from leaders in the development and application of this technology, Point-Based Graphics examines it from all angles, beginning with the way in which the latest photographic and scanning devices have enabled modeling based on true geometry, rather than appearance. From there, it's on to the methods themselves. Even though point-based graphics is in its infancy, practitioners have already established many effective, economical techniques for achieving all the major effects associated with traditional 3D Modeling and rendering. You'll learn to apply these techniques, and you'll also learn how to create your own. The final chapter demonstrates how to do this using Pointshop3D, an open-source tool for developing new point-based algorithms. - The first book on a major development in computer graphics by the pioneers in the field - Shows how 3D images can be manipulated as easily as 2D images are with Photoshop
This book constitutes the refereed proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2003, held in Berlin, Germany in February/March 2003. The 58 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 253 submissions. The papers address the whole range of theoretical computer science including algorithms and data structures, automata and formal languages, complexity theory, semantics, logic in computer science, as well as current challenges like biological computing, quantum computing, and mobile and net computing.
In the post-genomic era, a holistic understanding of biological systems and p- cesses,inalltheircomplexity,is criticalincomprehendingnature’schoreography of life. As a result, bioinformatics involving its two main disciplines, namely, the life sciences and the computational sciences, is fast becoming a very promising multidisciplinary research ?eld. With the ever-increasing application of lar- scalehigh-throughputtechnologies,suchasgeneorproteinmicroarraysandmass spectrometry methods, the enormous body of information is growing rapidly. Bioinformaticians are posed with a large number of di?cult problems to solve, arising not only due to the complexities in acquiring the molecular infor- ti...