You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Born after World War II, large-scale experimental high-energy physics (HEP) has found itself limited ever since by available accelerator, detector and computing technologies. Accordingly, HEP has made significant contributions to the development of these fields, more often than not driving their innovations. The invention of the World Wide Web at CERN is merely the best-known example out of many. This book is the first comprehensive account to trace the history of this pioneering spirit in the field of computing technologies. It covers everything up to and including the present-day handling of the huge demands imposed upon grid and distributed computing by full-scale LHC operations—operati...
Are there truly fundamental entities in nature? Or are the things that we regard as fundamental in our theories – for example space, time or the masses of elementary particles – merely awaiting a derivation from a new, yet to be discovered theory based on elements that are more fundamental? This was the central question posed in the 2018 FQXi essay competition, which drew more than 200 entries from professional physicists, philosophers, and other scholars. This volume presents enhanced versions of the fifteen award-winning essays, giving a spectrum of views and insights on this fascinating topic. From a prescription for “when to stop digging” to the case for strong emergence, the reader will find here a plethora of stimulating and challenging ideas - presented in a largely non-technical manner - on which to sharpen their understanding of the language of physics and even the nature of reality.
This book provides an outline of theoretical concepts and their experimental verification in studies of self-organization phenomena in chemical systems, as they emerged in the mid-20th century and have evolved since. Presenting essays on selected topics, it was prepared by authors who have made profound contributions to the field. Traditionally, physical chemistry has been concerned with interactions between atoms and molecules that produce a variety of equilibrium structures - or the 'dead' order - in a stationary state. But biological cells exhibit a different 'living' kind of order, prompting E. Schrödinger to pose his famous question “What is life?” in 1943. Through an unprecedented...
This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (and conceivable answers) related to the general practice of computer simulations.
It is commonly held that there is no place for the 'now’ in physics, and also that the passing of time is something subjective, having to do with the way reality is experienced but not with the way reality is. Indeed, the majority of modern theoretical physicists and philosophers of physics contend that the passing of time is incompatible with modern physical theory, and excluded in a fundamental description of physical reality. This book provides a forceful rebuttal of such claims. In successive chapters the author explains the historical precedents of the modern opposition to time flow, giving careful expositions of matters relevant to becoming in classical physics, the special and general theories of relativity, and quantum theory, without presupposing prior expertise in these subjects. Analysing the arguments of thinkers ranging from Aristotle, Russell, and Bergson to the proponents of quantum gravity, he contends that the passage of time, understood as a local becoming of events out of those in their past at varying rates, is not only compatible with the theories of modern physics, but implicit in them.
This open access book chronicles the rise of a new scientific paradigm offering novel insights into the age-old enigmas of existence. Over 300 years ago, the human mind discovered the machine code of reality: mathematics. By utilizing abstract thought systems, humans began to decode the workings of the cosmos. From this understanding, the current scientific paradigm emerged, ultimately discovering the gift of technology. Today, however, our island of knowledge is surrounded by ever longer shores of ignorance. Science appears to have hit a dead end when confronted with the nature of reality and consciousness. In this fascinating and accessible volume, James Glattfelder explores a radical paradigm shift uncovering the ontology of reality. It is found to be information-theoretic and participatory, yielding a computational and programmable universe.
The distributed computing infrastructure known as ‘the Grid’ has undoubtedly been one of the most successful science-oriented large- scale IT projects of the past 20 years. It is now a fully operational international entity, encompassing several hundred computing sites on all continents and giving access to hundreds of thousands of CPU (central processing unit) cores and hundreds of petabytes of storage, all connected by robust national and international scientific networks. It has evolved to become the main computational platform many scientific communities. This book presents lectures from the Enrico Fermi International School of Physics summer school Grid and Cloud computing: Concepts...
This book is about the mechanisms of wealth creation, or what we like to think of as evolutionary "progress." The massive circular flow of goods and services between producers and consumers is not a perpetual motion machine; it has been dependent for the past 150 years on energy inputs from a finite storage of fossil fuels. In this book, you will learn about the three key requirements for wealth creation, and how this process acts according to physical laws, and usually after some part of the natural wealth of the planet has been exploited in an episode of "creative destruction." Knowledge and natural capital, particularly energy, will interact to power the human wealth engine in the future ...
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
This book presents a multidisciplinary perspective on chance, with contributions from distinguished researchers in the areas of biology, cognitive neuroscience, economics, genetics, general history, law, linguistics, logic, mathematical physics, statistics, theology and philosophy. The individual chapters are bound together by a general introduction followed by an opening chapter that surveys 2500 years of linguistic, philosophical, and scientific reflections on chance, coincidence, fortune, randomness, luck and related concepts. A main conclusion that can be drawn is that, even after all this time, we still cannot be sure whether chance is a truly fundamental and irreducible phenomenon, in ...