You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Simulations play an increasingly important role not only in scientific research but also in engineering developments. Introduction to Simulations of Semiconductor Lasers introduces senior undergraduates to the design of semiconductor lasers and their simulations. The book begins with explaining the physics and fundamental characteristics behind semiconductor lasers and their applications. It presumes little prior knowledge, such that only a familiarity with the basics of electromagnetism and quantum mechanics is required. The book transitions from textbook explanations, equations, and formulas to ready-to-run numeric codes that enable the visualization of concepts and simulation studies. Mul...
This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community. An interdisciplinary approach of interest to scientists and engineers working in a number of areas.
Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by...
As materials whose semiconducting properties are influenced by magnetic ions, DMSs are central to the emerging field of spintronics. This volume focuses both on basic physical mechanisms (e.g. carrier-ion and ion-ion interactions), and resulting phenomena.
The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, received much attention in the last years. In this work, a well-known control method called delayed feedback control is applied for the first time entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal, and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.
Semiconductorelectronicsiscommonplaceineveryhousehold.Semiconductor deviceshavealsoenabledeconomicallyreasonable?ber-basedopticalcom- nication, optical storage and high-frequency ampli?cation and have recently revolutionizedphotography,displaytechnologyandlighting.Alongwiththese tremendous technological developments, semiconductors have changed the way we work, communicate, entertain and think. The technological progress of semiconductor materials and devices is evolving continuously with a large worldwide e?ort in human and monetary capital. For students, semicond- tors o?er a rich, diverse and exciting ?eld with a great tradition and a bright future. This book introduces students to semico...
The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book wil...