You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nondestructive testing (NDT) is used to examine the ability of materials and components to withstand loads. Two features of NDT are defect inspection and materials characterization. Because of the increasing ability to manufacture materials and products "defect free" there is less need for defect-oriented NDT but an increasing need for materials characterization. This book is the first comprehensive work on materials characterization, presenting the state of the art and practical applications. Materials characterization is used during production, operations, service intervals, or after repairs. Materials are used to withstand mechanical, thermal, chemical, and irradiation loads-or a combinat...
This book is devoted to non-destructive materials characterization (NDMC) using different non-destructive evaluation techniques. It presents theoretical basis, physical understanding, and technological developments in the field of NDMC with suitable examples for engineering and materials science applications. It is written for engineers and researchers in R&D, design, production, quality assurance, and non-destructive testing and evaluation. The relevance of NDMC is to achieve higher reliability, safety, and productivity for monitoring production processes and also for in-service inspections for detection of degradations, which are often precursors of macro-defects and failure of components. Ultrasonic, magnetic, electromagnetic and X-rays based NDMC techniques are discussed in detail with brief discussions on electron and positron based techniques.
Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appeara...
The demand for new and effective methods for the evaluation, maintenance and live-time testing of objects in fields as diverse as engineering, medicine and art, continues to grow. Electromagnetic non-destructive evaluation is a process by which an object can be assessed without permanent alteration by means of inducing electric currents or magnetic fields within the object and observing the electromagnetic response.This book presents selected papers from the 18th International Workshop on Electromagnetic Non-destructive Evaluation (ENDE), which was held in Bratislava, Slovak Republic, on June 25-28, 2013. The aim of the workshop was to provide an international forum for the discussion of the state-of-the-art and perspectives in the field from the view of science, technology and engineering.The book is divided into five main sections: advanced sensors; analytical and numerical modeling and biomedical applications; innovative industrial applications; new developments; and, solutions of inverse problems. Containing 40 peer-reviewed papers, it will be of interest to all those whose work involves electromagnetic non-destructive evaluation, whatever their discipline.
Electromagnetic Field, Health and Environment mirrors the image of the EHE’07 conference which attracted people investigating the phenomenon of interaction of electromagnetic field and biological objects. This book tries to enlighten the problem with the use of scientifically founded facts kept within methodological discipline. The particular targets of the book can be briefly summarized as reviewing, presenting and discussing innovations in computer modeling, measurement and simulation of bioelectromagnetic phenomena, analyzing physical and biological aspects of bioelectromagnetic phenomena, and discussing environmental safety and policy issues as well as relevant international standards....
A collection of papers on electromagnetic nondestructive evaluation (NDE) techniques. Developments are discussed along with the implications of innovations for future inspection practice. Topics covered include: analytical and numerical modelling of electromagnetic NDE phenomena; solutions to NDE inverse problems; evaluation of material degradation in ferromagnetic structures; advanced sensors; industrial applications of NDE; and benchmark problems and solutions.
Annotation CONTENTS Part 1 Basic principles: Interaction of EM radiation with materials; Digital imaging and processing. Part 2 2D Optical reflection and confocal laser scanning microscopy: 2D Optical reflection microscopy; 3D Confocal Laser Scanning. Part 3 Other microscopical techniques: Complementary optical and EM imaging techniques; Other microscopy techniques.
This work is a collection of papers on electromagnetic nondestructive evaluation. It discusses developments in the growing field of electromagnetic nondestructive evaluation methods. Topics include evaluation of degradation mechanism in magnetic materials.
Electromagnetic Nondestructive Evaluation has grown considerably in recent years largely due to advances in sensor technology, computational modeling and data analysis techniques. This publication discusses developments in numerical simulation of physical phenomena associated with electromagnetic NDE methods, new electromagnetic sensors, signal and image processing techniques and inverse solutions to NDE problems. Electromagnetic Nondestructive Evaluation (IX) emphasizes basic science and early engineering developments in the field, as well as practical application of emerging technologies to problems of direct relevance to industry. The book contains thirty-six technical papers, covering topics on modeling, (forward and inverse problems), new inspection methods, materials characterization, signal processing and applications.