You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
A volume of papers describing new methods in algebraic geometry.
"Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."
The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.
"Surveys and applies fundamental ideas and techniques in the theory of curves, surfaces, and threefolds to a wide variety of subjects. Furnishes all of the basic definitions necessary for understanding and provides interrelated articles that support and refer to one another."
This book treats the theory of representations of homogeneous polynomials as sums of powers of linear forms. The first two chapters are introductory, and focus on binary forms and Waring's problem. Then the author's recent work is presented mainly on the representation of forms in three or more variables as sums of powers of relatively few linear forms. The methods used are drawn from seemingly unrelated areas of commutative algebra and algebraic geometry, including the theories of determinantal varieties, of classifying spaces of Gorenstein-Artin algebras, and of Hilbert schemes of zero-dimensional subschemes. Of the many concrete examples given, some are calculated with the aid of the computer algebra program "Macaulay", illustrating the abstract material. The final chapter considers open problems. This book will be of interest to graduate students, beginning researchers, and seasoned specialists. Prerequisite is a basic knowledge of commutative algebra and algebraic geometry.
State-of-the-art analytic number theory proceedings.
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
The main topics of the conference on "Curves in Projective Space" were good and bad families of projective curves, postulation of projective space curves and classical problems in enumerative geometry.