Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

A Guide to Quantum Groups
  • Language: en
  • Pages: 672

A Guide to Quantum Groups

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.

Cohomology of Number Fields
  • Language: en
  • Pages: 856

Cohomology of Number Fields

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Lévy Processes in Lie Groups
  • Language: en
  • Pages: 292

Lévy Processes in Lie Groups

Up-to-the minute research on important stochastic processes.

Global Homotopy Theory
  • Language: en
  • Pages: 847

Global Homotopy Theory

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

Lectures on Algebra
  • Language: en
  • Pages: 758

Lectures on Algebra

This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling.The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author''s fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more local rings and more algebraic geometry. Both books are based on the author''s lectures at Purdue University over the last few years.

Manifolds and Differential Geometry
  • Language: en
  • Pages: 671

Manifolds and Differential Geometry

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds...

Quantum Groups and Their Primitive Ideals
  • Language: en
  • Pages: 394

Quantum Groups and Their Primitive Ideals

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic...

Quantum Theory of Many-Body Systems
  • Language: en
  • Pages: 291

Quantum Theory of Many-Body Systems

  • Type: Book
  • -
  • Published: 2014-06-26
  • -
  • Publisher: Springer

This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume and which therefore provides an ideal testing ground for many-body theories.

Lecture notes series
  • Language: en
  • Pages: 124

Lecture notes series

  • Type: Book
  • -
  • Published: 2003
  • -
  • Publisher: Unknown

None

Differentiable Manifolds
  • Language: en
  • Pages: 425

Differentiable Manifolds

The basics of differentiable manifolds, global calculus, differential geometry, and related topics constitute a core of information essential for the first or second year graduate student preparing for advanced courses and seminars in differential topology and geometry. Differentiable Manifolds is a text designed to cover this material in a careful and sufficiently detailed manner, presupposing only a good foundation in general topology, calculus, and modern algebra. This second edition contains a significant amount of new material, which, in addition to classroom use, will make it a useful reference text. Topics that can be omitted safely in a first course are clearly marked, making this edition easier to use for such a course, as well as for private study by non-specialists.