You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
This 21st volume in the series contains 15 invited reviews and highlight contributions presented during the 2008 International Scientific Conference of the German Astronomical Society on the topic of "New Challenges to European Astronomy", held in Vienna, Austria. The papers discuss a wide range of hot topics, including cosmology, high-energy astrophysics, astroparticle physics gravitational waves, extragalactic and stellar astronomy -- together representing the roadmap for modern astrophysical research.
This volume consists of papers developed from a joint ACE/ISSI symposium at the occasion of the eightieth birthday of Johannes Geiss. The symposium explored insights into the composition of solar-system and galactic matter that have been brought about by recent space missions, ground-based studies, and theoretical advances. Coverage includes linking primordial to solar composition, planetary samples, solar sources and fractionation processes, and interstellar gas and Cosmic rays.
The Sun and stars rotate in di?erent ways and at di?erent velocity rates. The knowledge of how they rotate is important in understanding the formation and evolution of stars and their structure. The closest star to our Earth, the Sun, is a good laboratory to study in detail the rotation of a G star and allows to test new ideas and develop new techniques to study stellar rotation. More or less massive, more or lessevolved objects, however, can have averydi?erent rotation rate, structure and history. In recent years our understanding of the rotation of the Sun has greatly improved. The Sun has a well-known large-scale rotation, which can be m- sured thanks to visible features across the solar ...
This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
Reviews our current understanding of the life, evolution and death of massive stars; for researchers and graduate students.
Starbursts are regions of unusually rapid star formation, often located in the central parts of galaxies. They differ from more normal regions of star formation in terms of the throughput of mass and the rapidity with which the gas is consumed. In the last twenty years, extensive observational data at most wavelengths have become available on starbursts, but many important issues remain to be addressed, observationally as well as theoretically. How are strong episodes of star formation triggered? What is the quantity of gas converted into stars during bursts? What is the initial mass function of stars in these events? How does the feedback from stars influence the interstellar medium and sel...
Stellar models are the very basic building blocks with which we build up our knowledge of the Universe. New numerical experiments are heralding a new level of sophistication in our ability to model, and understand, how stars work. This volume provides an overview and the most recent advances in modeling of stellar structure and evolution. Modeling of stars relies on our understanding of the detailed physical processes happening in stars, and the most recent observations of stars made by modern large telescopes and current high technologies. IAU Symposium 252 presents the most recent developments in five key areas, including: improvements of the physical ingredients of stellar models; the evolution of low and intermediate mass stars; the evolution of massive stars; close binary evolution; and stellar physics in the era of very large telescopes. This overview of stellar research is at a level suitable for research astronomers and graduate students.
This book presents novel observational evidence toward detecting and characterizing the products of massive, interacting binary stars. As a majority of massive stars are born in close binary systems, a large number of so-called massive binary interaction products are predicted to exist; however, few have been identified so far. Based on observations with the largest telescopes around the world, equipped with state-of-the-art instrumentation, this book helps to remedy this situation. In her outstanding PhD-thesis Julia Bodensteiner identifies a new class of post-interaction binaries in a short-lived phase just briefly after the initially more massive star has been stripped of part of its enve...
This 22nd volume in the series contains 15 invited reviews and highlight contributions from outstanding speakers presented during the 2009 annual meeting of the Astronomical Society on the subject of "Deciphering the Universe through Spectroscopy", held in Potsdam, Germany. Topics range from the measurements of magnetic fields on the surface of the sun via detailed measurements of abundances in stellar atmospheres to the kinematics of the universe at its largest scales. The result is a systematic overview of the latest astronomical and cosmological research.