You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Composed of a set of lectures and tutorial reviews, this book stems from a summer school devoted to the gravitational aspects of the sun and their geophysical consequences. Contribitions elaborate on the gravitational distortions of the sun which can be used to gain some knowledge of the sun's interior and surface phenomena but which also influences the sun's irradience and thus ultimately the earth's climate. Last but not least, it is shown that these small distortions constitute a formidable challenge to solar astrometry, and the final part of the book describes the observational difficulties in defining unequivocally the solar diameter.
Based on lectures given at a CNRS summer school in France, this book covers many aspects of stellar environments (both observational and theoretical) and offers a broad overview of the field. More specifically, Part I of the book focuses on the Sun, the properties of the ejected plasma, of the solar wind and on space weather. The second part deals with tides in planetary systems and in binary stellar systems, as well as with interactions in massive binary stars as seen by interferometry. Finally the chapters of Part III discuss the environments of young or evolved stars, stellar winds, agnetic fields and disks. With its broad approach the book will provide advanced students as well as researchers with a good overview of the environments of the Sun and the stars.
The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measurements of flattening of the solar surface by SDO showed that the Sun’s shape is linked to the rotation of the core. It is shown how such a result is generalizable to the stars.
This book comprises an excursion through space weather, a scientific topic in rapid growth and with growing impact and implications for technological societies. The text is aimed at students and scientists working, or interested in, the field and provides a thorough introduction to the topic for those who wish to become acquainted with the basic solar physics at the origin of space weather.
Discusses recent advances and new problems in the exploration of the Sun's interior structure, solar dynamics and dynamo, mechanisms of sunspot and active regions formation, sources of solar irradiance variations and links between the subsurface dynamics, flaring and CME activity. NASA's Solar Dynamics Observatory (SDO) mission has provided a large amount of new data on solar dynamics and magnetic activities during the rising phase of the current and highly unusual solar cycle. These data are complemented by the continuing SOHO mission and by ground-based observatories that include the GONG helioseismology network and the New Solar Telescope. Also, the observations are supported by realistic...
Recording the proceedings of the IAU XXVI General Assembly, this volume of the IAU Highlights of Astronomy covers virtually all aspects of modern astrophysics as discussed by 2400 participants from 73 countries. Notably, the common aspects of astrophysical phenomena known to exist in widely differing interstellar environments is thoroughly examined, providing fertile cross correlation from one specialisation to another. This text highlights the importance of the triennial IAU General Assemblies in bringing together the work of observers and theoreticians in widely different fields, but working towards a common goal: understanding the physics of the Universe. Together with the Proceedings of the IAU Symposia 235-240, this volume examines all of the astrophysics presented at the General Assembly.
The book contains courses taught to a public of Ph.D. students, post-docs and confirmed researchers in all fields of heliospheric plasma physics. It aims at identifying physical issues which are common to two different fields of astronomy: solar and magnetospheric physics. Emphasis is given to basic processes of transport and conversion of energy: magnetic reconnection is discussed in detail from the viewpoints of MHD and kinetic physics. Processes of charged particle acceleration are reviewed and compared with recent observations. The subject is introduced by a summary of MHD, and the basic structures and parameters of the solar atmosphere, terrestrial ionosphere and magnetosphere are reviewed. The book combines a pedagogic and comprehensive presentation of physical issues and raises fully open questions, with the complementary and sometimes conflicting views of geophysicists and solar physicists. The book's focus, while basic, opens new avenues.
This volume of lecture notes brings together the knowledge on pulsations of the Sun and the stars, with a particular emphasis on recent observations and modelling, and on the influence of pulsations of other physical processes. The book begins with an extensive introduction to helioseismology. The solar cycle and gravity modes are discussed before the focus is widened from helioseismology to asteroseismology which is detailed in a series of specific chapters. Based on courses given at a graduate school, these tutorial lecture notes will be of interest and useful to a rather broad audience of scientists and students.
Polymer chains that interact with themselves and/or with their environment are fascinating objects, displaying a range of interesting physical and chemical phenomena. The focus in this monograph is on the mathematical description of some of these phenomena, with particular emphasis on phase transitions as a function of interaction parameters, associated critical behavior and space-time scaling. Topics include: self-repellent polymers, self-attracting polymers, polymers interacting with interfaces, charged polymers, copolymers near linear or random selective interfaces, polymers interacting with random substrate and directed polymers in random environment. Different techniques are exposed, including the method of local times, large deviations, the lace expansion, generating functions, the method of excursions, ergodic theory, partial annealing estimates, coarse-graining techniques and martingales. Thus, this monograph offers a mathematical panorama of polymer chains, which even today holds plenty of challenges.
The Sun and stars rotate in di?erent ways and at di?erent velocity rates. The knowledge of how they rotate is important in understanding the formation and evolution of stars and their structure. The closest star to our Earth, the Sun, is a good laboratory to study in detail the rotation of a G star and allows to test new ideas and develop new techniques to study stellar rotation. More or less massive, more or lessevolved objects, however, can have averydi?erent rotation rate, structure and history. In recent years our understanding of the rotation of the Sun has greatly improved. The Sun has a well-known large-scale rotation, which can be m- sured thanks to visible features across the solar ...