You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasam...
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
In this paper, neutrosophic soft cubic G-subalgebra is studied through P-union, Pintersection, R-union and R-intersection etc. furthermore we study the notion of homomorphism on G-algebra with some results.
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The neutrosophic cubic sets (NCSs) attained attraction of many researchers in the current time, so the need to discuss and study their stability was felt. Thus, in this article, we discuss the three types of stability of NCSs such as truth-stability, indeterminacy-stability, and falsity-stability. We define the left (resp., right) truth-left evaluative set, left (resp., right) indeterminacy-evaluative set, and left (resp., right) falsity-evaluative set. A new notion of stable NCSs, partially stable NCSs, and unstable NCSs is defined.
Graphs allows us to study the different patterns of inside the data by making a mental image. The aim of this paper is to develop neutrosophic cubic graph structure which is the extension of neutrosophic cubic graphs. As neutrosophic cubic graphs are defined for one set of edges between vertices while neutrosophic cubic graphs structures are defined for more than one set of edges. Further, we defined some basic operations such as Cartesian product, composition, union, join, cross product, strong product and lexicographic product of two neutrosophic cubic graph structures. Several types of other interesting properties of neutrosophic cubic graph structures are discussed in this paper. Finally, a decision-making algorithm based on the idea of neutrosophic cubic graph structures is constructed. The proposed decision-making algorithm is applied in a decision-making problem to check the validity.
This paper concerns the study of the notions of neutrosophic soft s-open set, neutrosophic soft s-neighborhood and neutrosophic soft s-separation axioms in neutrosophic soft topological spaces. By using such notions and that of neutrosophic soft point, we study the separation axioms s-Ti (with i = 0, . . .4), the s-regular and the s-normal neutrosophic soft topological spaces by proving some relationships between these classes of spaces and other results concerning hereditary and subspaces.