You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In geospatial analysis, navigating the complexities of data interpretation and analysis presents a formidable challenge. Traditional methods often need to efficiently handle vast volumes of geospatial data while providing insightful and actionable results. Scholars and practitioners grapple with manual or rule-based approaches, hindering progress in understanding and addressing pressing issues such as climate change, urbanization, and resource management. Ethics, Machine Learning, and Python in Geospatial Analysis offers a solution to the challenges faced by leveraging the extensive library support and user-friendly interface of Python and machine learning. The book’s meticulously crafted chapters guide readers through the intricacies of Python programming and its application in geospatial analysis, from fundamental concepts to advanced techniques.
As artificial intelligence (AI) revolutionizes communication and decision-making, its impact on industries and daily life grows. The AI boom has created an exciting opportunity for leaders to optimize human interaction, streamline decisions, and boost productivity across various fields. To compete at the highest level in today’s fast paced environments, understanding the potential of these technologies is essential. Enhancing Communication and Decision-Making With AI explores cutting edge possibilities for improvement in AI-driven collaboration, predictive analytics, and ethical considerations. These chapters provide practical applications and insights for integrating AI into communication and decision-making to create compelling communications material and drive consumer action. Covering topics such as social media influence, competitive advantage frontiers, and computational intelligence, this book is designed with professionals, researchers, and students in mind.
In today's rapidly evolving business landscape, organizations are inundated with vast amounts of data, making it increasingly challenging to extract meaningful insights and make informed decisions. The traditional business intelligence (BI) approach must often address the complexity and speed required for effective decision-making in this data-rich environment. As a result, many businesses need help to leverage their data to drive sustainable growth and remain competitive. Intersection of AI and Business Intelligence in Data-Driven Decision-Making presents a transformative solution to this pressing challenge. By exploring the convergence of artificial intelligence (AI) and BI, our book provides a comprehensive framework for leveraging AI-powered BI to revolutionize data analysis, predictive modeling, and decision-making processes. Readers will gain valuable insights into practical applications, emerging trends, and ethical considerations, inspiring and exciting them about the potential of AI in driving business success.
Technology’s rapid advancement has revolutionized how organizations gather, analyze, and utilize data. In this dynamic landscape, integrating artificial intelligence (AI) into business intelligence (BI) systems has emerged as a critical factor for driving informed decision-making and maintaining competitive advantage. This integration allows business to respond quickly to market changes, personalize customer experiences, and optimize operations with greater precision. As AI-driven BI tools continue to evolve, they empower organizations to harness vast amounts of data more effectively, making strategic decisions that are both timely and data-driven, thereby securing their position in an inc...
In today's fast-paced financial landscape, professionals face an uphill battle in effectively integrating data analytics and artificial intelligence (AI) into quantitative risk assessment and financial computation. The constantly increasing volume, velocity, and variety of data generated by digital transactions, market exchanges, and social media platforms offer unparalleled financial analysis and decision-making opportunities. However, professionals need sophisticated AI technologies and data analytics methodologies to harness this data for predictive modeling, risk assessment, and algorithmic trading. Navigating this complex terrain can be daunting, and a comprehensive guide that bridges t...
Academics and researchers currently grapple with a pressing issue; the demand for precise and insightful geographical information has surged across various fields, encompassing urban planning, environmental monitoring, agriculture, and disaster management. This surge has revealed a substantial knowledge gap, underscoring the need for effective applications that can bridge the gap between cutting-edge technologies and practical usage. Geospatial Application Development Using Python Programming emerges as the definitive solution to this challenge. This comprehensive book equips academics, researchers, and professionals with the essential tools and insights required to leverage the capabilities of Python programming in the realm of spatial analysis. It goes beyond merely connecting these two realms; it actively fosters their collaboration. By advancing knowledge in spatial sciences and highlighting Python's pivotal role in data analysis and application development, this book plays a crucial part in addressing the challenge of effectively harnessing geographical data.
This book presents novel work of academicians, researchers, industry professionals, practitioners, and budding engineers to disseminate the most recent innovations, trends, and concerns along with the present-day challenges and the solving approaches for implementation in the domains of data science, intelligent computing, and computer networks and security. It is a collection of selected high-quality research papers from the International Conference on Data Science, Intelligent Computing and Cyber Security (ICDIC 2020) organized by Sree Vidyanikethan Engineering College, Tirupati, India, during 27–29 February 2020. It discusses the latest challenges and solutions in the field of data innovation, data management, data analysis, data security, and intelligent methods and applications.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2022) held at Institute of Engineering & Management, Kolkata, India, during 23–25 February 2022. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of Things (IoT) and information security.
This volume presents select proceedings of the International Conference on Sustainable Advanced Computing (ICSAC – 2021). It covers the latest research on a wide range of topics spanning theory, systems, applications, and case studies in advanced computing. Topics covered are machine intelligence, expert systems, robotics, natural language processing, cognitive science, quantum computing, deep learning, pattern recognition, human-computer interface, biometrics, graph theory, etc. The volume focuses on the novel research findings and innovations of various researchers. In addition, the book will be a promising solution for new generation-based sustainable, intelligent systems that are machine and human-centered with modern models and appropriate amalgamations of collaborative practices with a general objective of better research in all aspects of sustainable advanced computing.
This book gathers a collection of high-quality peer-reviewed research papers presented at International Conference on Cyber Intelligence and Information Retrieval (CIIR 2021), held at Institute of Engineering & Management, Kolkata, India during 20–21 May 2021. The book covers research papers in the field of privacy and security in the cloud, data loss prevention and recovery, high-performance networks, network security and cryptography, image and signal processing, artificial immune systems, information and network security, data science techniques and applications, data warehousing and data mining, data mining in dynamic environment, higher-order neural computing, rough set and fuzzy set theory, and nature-inspired computing techniques.