You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first book devoted to black holes in more than four dimensions, for graduate students and researchers.
"Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, and gauge/gravity duality have all motivated a study of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: RobMyers describes theMyers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. There are two additional chapters on this duality describing how black holes can be used to describe relativistic fluids and aspects of condensed matter physics"--
This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
A comprehensive summary of progress made during the past decade on the theory of black holes and relativistic stars, this collection includes discussion of structure and oscillations of relativistic stars, the use of gravitational radiation detectors, observational evidence for black holes, cosmic censorship, numerical work related to black hole collisions, the internal structure of black holes, black hole thermodynamics, information loss and other issues related to the quantum properties of black holes, and recent developments in the theory of black holes in the context of string theory. Volume contributors: Valeria Ferrari, John L. Friedman, James B. Hartle, Stephen W. Hawking, Gary T. Horowitz, Werner Israel, Roger Penrose, Martin J. Rees, Rafael D. Sorkin, Saul A. Teukolsky, Kip S. Thorne, and Robert M. Wald.
Explore spectacular advances in contemporary physics with this unique celebration of the centennial of Einstein's discovery of general relativity.
The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: c...
This volume contains the proceedings of the twelfth triannual International Conference on General Relativity and Gravitation, the premier conference for presentation and discussion of new ideas in relativity and cosmology. The volume will contain the invited talks as well as short reports on the parallel workshops that took place at the meeting. It will be essential reading for all research workers in relativity, cosmology and astrophysics.
Recent developments in supersymmetric field theory, string theory, and brane theory have been revolutionary. The main focus of the present volume is developments of M-theory and its applications to superstring theory, quantum gravity, and the theory of elementary particles. Topics included are D-branes, boundary states, and world volume solitons. Anti-De-Sitter quantum field theory is explained, emphasising the way it can enforce the holography principle, together with the relation to black hole physics and the way Branes provide the microscopic interpretation for the entropy of black holes. Developments in D-branes within type-I superstring and related theories are described. There are also possible phenomenological implications of superstring theory that would lie within the range of quantum gravity effects in the future generation of accelerators, around 1 TeV.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open pro...