You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Includes a paper that deals the connective K homology and cohomology of finite groups $G$. This title uses the methods of algebraic geometry to study the ring $ku DEGREES*(BG)$ where $ku$ denotes connective complex K-theory. It describes the variety in terms of the category of abelian $p$-subgroups of $G$ for primes $p$ dividing the group
This text describes the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in the extended Dynkin diagram of the simply connected cover, together with the co-root integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.
Under minimal assumptions on a function $\psi$ the authors obtain wavelet-type frames of the form $\psi_{j, k}(x) = r DEGREES{(1/2)n j} \psi(r DEGREESj x - sk), j \in \integer, k \in \integer DEGREESn, $ for some $r > 1$ and $s > 0$. This collection is shown to be a frame for a scale of Triebel-Lizorkin spaces (which includes Lebesgue, Sobolev and Hardy spaces) and the reproducing formula converges in norm as well as pointwise a.e. The construction follows from a characterization of those operators which are bounded on a space of smooth molecules. This characterization also allows us to decompose a broad range of singular integral operators in ter
Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r, {\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$
This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22–26, 2016 and Probabilistic Methods in Topology, held from November 14–18, 2016 at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrödinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading researchers in quantum chaos, semi-clas...
A formula for the odd-primary v1-periodic homotopy groups of a finite H-space in terms of its K-theory and Adams operations has been obtained by Bousfield. This work applys this theorem to give explicit determinations of the v1-periodic homotopy groups of (E8,5) and (E8,3), thus completing the determination of all odd-primary v1-periodic homotopy groups of all compact simple Lie groups, a project suggested by Mimura in 1989.
Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.
Presents the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. This book offers introduction of a canonically invariant scheme for the computation of the splitting matrix.
Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.
Focuses on the relationship between definable forcing and descriptive set theory; the forcing serves as a tool for proving independence of inequalities between cardinal invariants of the continuum.