You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Capturing the state of the art of the interplay between positivity, noncommutative analysis, and related areas including partial differential equations, harmonic analysis, and operator theory, this volume was initiated on the occasion of the Delft conference in honour of Ben de Pagter's 65th birthday. It will be of interest to researchers in positivity, noncommutative analysis, and related fields. Contributions by Shavkat Ayupov, Amine Ben Amor, Karim Boulabiar, Qingying Bu, Gerard Buskes, Martijn Caspers, Jurie Conradie, Garth Dales, Marcel de Jeu, Peter Dodds, Theresa Dodds, Julio Flores, Jochen Glück, Jacobus Grobler, Wolter Groenevelt, Markus Haase, Klaas Pieter Hart, Francisco Hernánd...
gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.
This book presents nine survey articles addressing topics surrounding positivity, with an emphasis on functional analysis. The book assembles a wide spectrum of research into positivity, providing up-to-date information on topics of current interest. The discussion provides insight into classical areas like spaces of continuous functions, f-algebras, and integral operators. The coverage extends is broad, including vector measures, operator spaces, ordered tensor products, and non-commutative Banach function spaces.
An introduction to topology and the language of mathematics that works. Ideal for the undergraduate student with little to no background in the subject. Excellent for the advanced high school mathematics student, interested in a taste of next steps. Also useful to graduate students looking for a refresher or fresh take on their foundation in the topics.
This volume presents papers from the Fourth Conference on Function Spaces. The conference brought together mathematicians interested in various problems within the general area of function spaces, allowing for discussion and exchange of ideas on those problems and related questions. The lectures covered a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), $Lp$-spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and related subjects. Included are 26 articles written by leading experts. Known results, open problems, and new discoveries are featured. Most papers are written for nonexperts, so the book can serve as a good introduction to the material presented.
From the 28th of February through the 3rd of March, 2001, the Department of Math ematics of the University of Florida hosted a conference on the many aspects of the field of Ordered Algebraic Structures. Officially, the title was "Conference on Lattice Ordered Groups and I-Rings", but its subject matter evolved beyond the limitations one might associate with such a label. This volume is officially the proceedings of that conference, although, likewise, it is more accurate to view it as a complement to that event. The conference was the fourth in wh at has turned into aseries of similar conferences, on Ordered Algebraic Structures, held in consecutive years. The first, held at the University of Florida in Spring, 1998, was a modest and informal affair. The fifth is in the final planning stages at this writing, for March 7-9, 2002, at Vanderbilt University. And although these events remain modest and reasonably informal, their scope has broadened, as they have succeeded in attracting mathematicians from other, related fields, as weIl as from more distant lands.
In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusse...
This Proceedings Volume contains 32 articles on various interesting areas ofpresent-day functional analysis and its applications: Banach spaces andtheir geometry, operator ideals, Banach and operator algebras, operator andspectral theory, Frechet spaces and algebras, function and sequence spaces.The authors have taken much care with their articles and many papers presentimportant results and methods in active fields of research. Several surveytype articles (at the beginning and the end of the book) will be very usefulfor mathematicians who want to learn "what is going on" in some particularfield of research.
This fascinating study of mathematical thinking among sub-Saharan African peoples covers counting in words and in gestures; measuring time, distance, weight, and other quantities; manipulating money and keeping accounts; number systems; patterns in music, poetry, art, and architecture; and number magic and taboos. African games such as mankala and elaborate versions of tic-tac-toe show how complex this thinking can be. An invaluable resource for students, teachers, and others interested in African cultures and multiculturalism, this third edition is updated with an introduction covering two decades of new research in the ethnomathematics of Africa.
Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory a...