You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book on the terrestrial space environment is directed at a broad group of students and scientists, who seek knowledge of the methods and results of space research. The only prerequisites are fundamental physics and mathematics as usually acquired in introductory college courses in science or engineering curricula. Stressing physical insight rather than mathematical precision, "Physics of the Earth’s Space Environment" derives further knowledge on selected topics as each phenomenon is considered and strives to present experimental results in conjunction with basic reasoning about the underlying physics. The content’s breadth and introductory nature make this an ideal reader for students in geophysics, meteorology, space sciences and astronomy
The various processes that connect the physics of the Sun with that of the Earth`s environment has become known as "Space Weather" during recent years, a slogan that has emerged in connection with many other expressions adapted from meteorology, such as solar wind, magnetic clouds or polar rain. This volume is intended as a first graduate-level textbook-style account on the physics of these solar-terrestrial relations and their impact on our natural and technological environment.
The participation of such diverse scientific and technical disciplines as meteorology, astronomy, atmospheric electricity, ionospheric and magnetospheric physics, electromagnetic wave propagation, and radio techniques in the research of atmospherics means that results are published in scientific papers widely spread throughout the literature. This Handbook collects the latest knowledge on atmospherics and presents it in two volumes. Each chapter is written by an expert in his or her field. Topics include the physics of thunderclouds, thunder, global atmospheric electric currents, biological aspects of sferics, and various space techniques for detecting lightning within our own atmosphere as well as in the atmospheres of other planets. Up-to-date applications and methodology are detailed. Volumes I and II offer a comprehensive discussion that together will serve as an important resource for practitioners, professionals, and students alike.
Presents the experimental results while explaining the underlying physics on the basis of simple reasoning and agumentation. Assumes only basic knowledge of of fundamental physics and mathematics as usually required for introductory college courses in science or engineering curricula. Derives more specifics of selected topics as each phenomenon considered ,epmasizing an intuitive over a rigorous mathematical approach. Directed at a broad group of readers and students.
None
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 181. Filling the need for a 20-year lag in substantial consideration of the midlatitude ionosphere, this volume focuses on work that takes advantage of GPS and UV imaging from satellites over the past decade, two methods that have profoundly transformed our understanding of this stratum of the atmosphere. Its interdisciplinary content brings together researchers of the solar wind, magnetosphere, ionosphere, thermosphere, polar and equatorial ionospheres, and space weather. Modeling and assimilative imaging of the ionosphere and thermosphere show for the first time the complex and global impact of ...
This book provides a comprehensive introduction to the physical phenomena that result from the interaction of the sun and the planets - often termed space weather. Physics of the Space Environment explores the basic processes in the Sun, in the interplanetary medium, in the near-Earth space, and down into the atmosphere. The first part of the book summarizes fundamental elements of transport theory relevant for the atmosphere, ionosphere and the magnetosphere. This theory is then applied to physical phenomena in the space environment. The fundamental physical processes are emphasized throughout, and basic concepts and methods are derived from first principles. This book is unique in its balanced treatment of space plasma and aeronomical phenomena. Students and researchers with a basic mathematics and physics background will find this book invaluable in the study of phenomena in the space environment.